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NONLINEAR DIFFRACTION OF OCEAN GRAVITY WAVES

ABSTRACT

In an irregular sea, waves having different wave numbers interact

nonlinearly, giving rise to long waves at the difference frequency and

wavenumber. The long waves are associated with motions that have large

characteristic time and space scales.

The method of multiple scales in time and in space, in conjunction

with perturbation expansions, enables us to separate the flow into com-

ponents for the general case when there are wave-trains propagating in

different directions. In particular, it is of great interest to study

the effect of modification of the short waves by diffraction, refrac-

tion, reflection and radiation. Using the method of matched asymp-

totics we determine the long-wave, that consists of forced waves tra-

velling with the short-wave groups and of an additional wave that pro-

pagates away from the "zone of modification" at the long-wave velocity

(gh)1/2 . The resulting theory has a wide range of applications. We

have studied the following problems:

a) Slow Sway of a Moored Floating Body in Water of Finite Depth

Both large and small amplitude cases were studied, as well as the

effect of different geometries and mooring stiffness. New

analytical results for a block with small clearance underneath

are included and the existence of resonance is displayed.

Periodic and different transient inputs were studied.
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b) Wave Trapping on a Shelf

Normal and obliquely incident slowly varying waves were studied,

retaining short wave reflection. For the obliquely incident waves

trapping can occur. This trapped wave cannot be excited from off

the shelf by any linear mechanism. The shelf response is computed

and singular resonance is found. The transient response, h.)ever,

is finite. It too is determined.

c) Excitation of Interfacial Waves in the Lee of a Breakwater

The method of multiple scales is used to determine the non-reso-

nant interaction of surface waves with internal waves in a two

layer fluid. We study the effect of diffraction by a long break-

water. While the short waves are decaying behind the breakwater,

free long internal waves are propagating directly into that

shadow zone.

The present method of analysis, and in particular the multiple

scales expansion, proves to be a useful tool in studying modulation and

nonlinearity in several aspects at wave propagation, and can be

extended to the study of a heretofore unexplored aspect of harbour

resonance. The ideas will be sketched in the Epilogue.

Thesis Supervisor: Chiang C. Mei

Title: Professor of Civil Engineering
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1. INMTIODUCTION

1.1 Survey of Literature

During the last fifteen years there has been an increasing inter-

est in the low frequency effects of irregular waves interacting with

floating bodies. The low frequency force and motion can be suffic-

iently large and are important to the design of moored and dynamically

positioned offshore structures. They can also affect the behaviour of

ships as well as that of icebergs.

Moored offshore platforms are subject to seas with narrow-banded

spectra. The moored vessel may have natural frequencies of horizontal

plane motions (sway, surge, yaw) at the order of 0.01 Hz, which are

much lower than the dominant frequencies of the incident sea, typically

0.1 Hz. It has been observed that the horizontal response of a moored

vessel is indeed the largest at the low frequency range around its

natural period (Verhagen & Van Sluijs (1970), Hsu & Blenkarn (1970),

Remery & Herman (1971); see Fig. 1.1). At these frequencies the prime

source of forcing is associated with the modulation periods of short-

wave groups. Nonlinear interaction of the high frequency waves forces

waves at the difference (beat) frequencies and wavenumbers.

Several authors have approached the long period motion within the

potential theory. A comprehensive review of this topic has been given

by Ogilvie (1983), who also cites a few references that treat viscous

effects. In a regular wave train the steady drift force, which is

second order in wave slope, can be computed from the first order

(linear) solution. In irregular waves, Newman (1974) has found that

7
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the slow drift force can be written as a quadratic "transfer" function

of the wave components. The coefficients of this function can be expan-

ded as functions of the difference frequencies. He suggests that for

small frequency differences the coefficients can be approximated by

their values at zero difference - thus the slowly varying drift force is

almost as simple as the steady drift force.

Newman's result has been supported by Martinsen (1983) following an

idea suggested by Hsu & Blenkarn (1970). In the time domain, the slowly

varying wave is viewed as a regular wave train for any given instant,

with amplitude and frequency of the irregular wave at that instant and

place. The slowly varying force is then assumed to be given by the

steady drift force that would correspond to a regular wave train that

has those instantanous and local characteristics. Martinsen points out

in addition that for certain geometries, small frequency changes may

result in large changes in the steady drift force; this was not included

in the analysis of Roberts (1981) who used the same approach to study

drift motion in random seas with nonlinear restoring forces.

In computing the slow drift force, the pressure is integrated over

the wetted surface of the body and the low frequency terms are collect-

ed. Nearly all of these terms have corresponding terms in the expres-

sion for the steady drift force due to a regular wave train, with the

exception of a term tha. includes a slowly varying potential. This pot-

ential has not been included by Newman, Martinsen or Roberts. Bowers

(1976) computed the low frequency potential forced by two regular wave

trains without diffraction effects. A similar approach was followed by

Pinkster (1980). When the water depth is small compared with the wave-
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length of the slow wave, this potential becomes large and needs to be

considered.

Triantafyllou (1982) has observed that for finite depth the slow

potential is of first order. He used a multiple time expansion to

study large amplitude (0(1)) motion; this technique was also employed

by Molin & Bureau (1980). Using more traditional arguments, Faltinsen

& Loken (1979) have calculated the contribution of the slowly varying

potential by introducing a related boundary value problem and using

Green's Theorem for two dimensional bodies in water of infinite depth.

They have concluded from computed results that the contribution of the

term in question is small when the wave spectrum is narrow banded.

The related problem of diffraction by fixed coastal structures is

also of engineering importance. The linear problem has been exten-

sively studied in the literature (see Mei (1983)). In particular, the

propagation of waves which are short compared with the structure's dim-

ensions can be approximated by the theory of geometric optics and the

parabolic approximation. Not much theory is available on the nonlinear

aspects.

Interaction of the long waves that accompany groups of short waves

can also occur when the wave motion is modified by topography (refrac-

tion) or by coastal structures such as islands or harbours (diffrac-

tion). Mei & Benmoussa (1984) have discussed the refraction of slowly

varying waves due to slowly varying depth where the length scales of

the variations are comparable. They have found a nonlinear mechanism

for producing free long waves which do not propagate in the same direc-

tion as the wave group. In particular long waves can be trapped over a

10



ridge. Foda and Mei (1981) have studied such trapping using high order

theory. Symonds and Bowen (1984) have studied trapping of long-waves

by breaking short-waves.

Bowers (1977) has studied a problem that is essentially one dimen-

sional, where a narrow rectangular wave flume resonates a very narrow

rectangular basin. He has shown that the free long waves induced by

incident short wave groups can resonate such a harbour. The resonant

periods are much longer than those of the incident short waves, but may

be close to their modulation period.

1.2 Scope of Thesis

In this thesis, both floating bodies and large fixed structures

will be treated.

It is well known that weve motion with long periods is associated

with long length scales. The modulation length scale and the long

waves associated with it are expected to be much larger than the short

wave-length. This suggests the introduction of multiple scales in

space as well as in time. In Chapter 2 a general theory is presented

for the interaction of short waves with long waves in water of finite

depth. The motion of a floating body that performs slow drift motion

in water of finite depth is our first application. Both large and

small drift displacements are studied in Chapter 3. The effects of the

determining factors, the mooring stiffness, and the body geometry are

examined. Both two and three dimensional geometries are discussed in

general terms. A special two-dimensional configuration which exhibits

11



damped resonance is that of a horizontal rectangular block with a

narrow gap underneath it. This geometry is studied analytically, and

compared to a block with no gap. Solutions for transient evolution

that feature initial growth, approach to quasi-steady state and decay

are also given.

Slowly varying wavetrains may interact with the sea bottom topo-

graphy as well as with coastal structures such as islands and harbours.

The characteristic length of these structures is much larger than that

of the floating bodies. To illustrate the physics, we study a few

simple geometrics. In Chapter 4 the interaction of slowly varying

waves with a shelf/ridge is studied. For oblique incidence trapping of

waves and resonance are found. The transient response of the shelf is

also studied, displaying a 'wake' effect after the incident waves pass

through.

In Chapter 5 we study the diffraction of slowly varying surface

waves by a long breakwater in a two layer fluid. In particular, long

interfacial waves are forced by the wave groups. We show that free

long internal waves are emitted from the shadow boundary into the lee

of the breakwater and compute their magnitude. In Chapter 6 the work

is concluded. Limitations and possible extensions, including harbour

resonance, are discussed.

12



THE INTERACTION OF SHORT PERIOD WAVES WITH LONG PERIOD WAVES

2.1 Introduction and Definitions

It is well known that progressive waves induce a depression in the mean

water surface level, which includes the "set down", as well as a drift

current, which includes "Stokes' drift". These quantities are averages over

the short period of the surface wave. They are second order, proportional to

the square of the wave steepness. Longuet-Higgins and Stewart (1962,1964)

have obtained expressions that relate these mean quantities to the 'radiation

stress' which stands for the momentum flux due to the wave propagation.

When the amplitude of the short waves varies slowly in time and space,

the 'set down' and the drift vary correspondingly, at the same spatial and

temporal rates. They are proportional to the square of the amplitude of the

primary waves. This slow variation has the nature of a wave, and will be

referred to as a long, or low frequency, wave. By carrying out a

perturbation expansion of the wave potential and using the technique of

multiple scales, we study the interaction between a rigid structure, groups

of slowly varying waves that propagate in different directions, and the long

period waves that are induced by them. Specific examples are: floating

bodies, depth variations, and breakwaters.

Under the usual assumptions of potential theory (ideal incompressible

fluid, irrotationality, no separation etc.) we may write Laplace Equation for

the velocity potential O(x, y, z, t):

0 - 0 in the fluid (2.1.1)

where (x,y,z) are Cartesian coordinates, with the positive z axis pointing

vertically upwards, and t denotes time. Writing g for gravity acceleration,

13



P for pressure and p for the fluid density, we may write Bernoulli's Equa-

tion:

+ t 2 1 Vo (2.1.2)

We let the pressure at the free surface be zero. Assuming small wave steep-

ness, and Taylor expanding the free surface boundary condition for 0 around

the rest position of the free surface, we get:

go _L (V)2 + _L t t - Vh(Vho Ot

gt Z t zt't -vE(h

(2.1.3)
+ 00 h 03 3)t ), ~v ( (z = 0)

(cf. Benney (1962)).

At the rigid bottom, the kinematic boundary condition is:

oz = V h O.Vh h (z - -h) (2.1.4)

where Vh = ( ax, a/ay) is the horizontal gradient, and h = h(x, y) is the

bottom depth.

The water is assumed to be of intermediate depth, comparable to the wave

length:

kh - 0(0) (2.1.5)

We shall study only bathymetries that are piecewise horizontal (Vh is zero)

for which (2.1.4) reduces to:

0 = 0 (z - -h) (2.1.6)

There are two small parameters that are associated with the peturbation

expansion for slowly varying small amplitude waves. The first one is the

wave steepness:

- O(k ,A) << 1 (2.1.7)

where k is the central wavenumber and eA is the free surface amplitude of the

short wave.

14



The second parameter is the modulation ratio:

0- O(pnI/w) << 1 (2.1.8)

where w - O(g/h) 1/2 is the central frequency of the short wave, and un is

the frequency of modulation of the short wave, or - equivalently, its

frequency bandwidth. For simplicity, we shall choose c equal to U, so as to

render the effects of dispersion and nonlinearity comparable.

The vastly different spatial and temporal scales of the short waves and

their envelopes, suggest the introduction of multiple scales. This will

enable us to distinguish between quantities of different magnitudes and

obtain a consistent analysis of the different orders.

2.2 The Nultiple-Scales Analysis

Since the wave envelopes have typical temporal scales of O(ec) - 1 and

spatial scales of O(ek) - I, we define the stretched coordinates:

(Xl, Y1 ' t1 ) 
= C(x, y, t) (2.2.1)

Since the fluid depth, h, is assumed to be much smaller than the long scale,

there is no need to stretch the vertical coordinate.

The potential, 4, and the free surface displacement, ;, are expanded in

powers of the small parameter e:

(0, ) - £(O1, 1) + C2(2 2C + (2.2.2)

where On and n are functions of the fast and the slow coordinates:

{ n = On (x, y, z, t, Xl, Y1 9 ti), n = Cn(Xp y9 t, Xl, Y1 9 tl)1 - 0(1)(2.2.3)

All quantities in this work are 0(1) with powers of c signifying the order.

The partial derivatives become:

15



a/at (,n .n)  n , nt + C On ] (2.2.4)
ti

etc.

Expanding (2.1.1) in this fashion, we obtain, after separating the

orders:

- 0 (2.2.5a)

A§2  -2 1xx1 - 20 I  (2.2.5b)

In the same way, (2.1.3) gives at (z = 0):

0 t t + go1z 0 (2.2.6a)

2tt + g -
2 0t [1 (v 1 )2 _ 1(.It lz)t]t -Vh@(olt Vhol) (2.2.6b)

and from (2.1.6), at (z - -h):

o1z = 0 (2 .2.7a)

02z - 0 (2.2.7b)

The dependence on fast time, t, is in the form e-Imwt where m is an

integer. We further expand On, 4n in terms of these time harmonics,

defined by: n

(On' =  1 (0 nm' ;nm)ei m t (2.2.8)
mm' -n1

where *nm are complex, containing the phase information. We require

Onm -n, -m (where ( )* is the complex conjugate) so that onm are

real.

In the following sections, we shall solve the perturbation equations at

the different orders and harmonics that are required to determine the leading

16



order slow motion and long waves. The first order first harmonic potential

011, represents the short waves. Because of the use of multiple scales, the

long wave potential, too, is first order. It is the zeroth harmonic, 010.

By focusing on the long spatial scales we shall obtain a governing equation

for 010, in terms of the solution for 011. In this chapter, only the general

form of the solution will be studied. The sp.ecifics of the near field solu-

tion and matching to the far field are left to the following chapters. We

begin by studying the short waves potential, 411.

2.3 The Short Waves Away from the Body

Extracting the first order first harmonic equations, for the primary

short wave potential, from (2.2.5a, 2 .2 .6a, 2.2. 7a), we obtain:

Ati1 0 (-h < z < 0) (2.3.1)

411z - €i " 0 (z 0 0) (2.3.2)

2
where a -

0llz " 0 (z - -h) (2.3.3)

These equations are formally the same as the linearized equations for

purely periodic waves with frequency w.

We focus our attention on a form of the solution that is general enough

for the classes of problems studied in the present work. This form assumes

periodicity of the short wave in the y direction:

" fo(z) [s+(als Yj, t1 )e a
+iyy + sO(X1 * YIp t )e

-i° y+i y

(2.3.4)
San x+iyy -a x+iyy

+ fn(z ) [s (xP YIP tI) e + SO(xis Y,, ti)e n
n=I

17



; n - 0, 1, 2... are the eigenfunctions:

f V2 cosh k(z+h)
(h+o- 1 sinh2kh)

(2.3.5a)

/2 cos k (z+h)

n (h-a 1 sin 2 kh)l/2  , 2,...

with k and kn the positive real roots of

k tanh kh -a

(2.3.5b)
k tan k h -o

n n

The wave numbers (an, Y) satisfy:

2 2  k2  n0

(2.3.6)
2 2 2
+ y -k n 1, 2 ,...n n

We may also write: a - k sin , y - k cos 8, where 8 is the direction of pro-

pagation of the propagating modes. In any given region either {s }, or {s-}

n - 1,2... may be present, and their contribution is decaying exponentially.

These modes are called the evanescent modes. When the water depth, h, takes

on different but constant values, the wavenumbers and eigenfunctions must

change according to the dispersion relation (2.3.5b).

The propagation of the wave envelopes for the propagating modes, s+ and
0

s-, can be found from solvability conditions for the second order first har-

monic potential 021" In view of (2.3.4), the governing equations for the

propagating modes, e.g., the component associated with s+, can be separated
0'

from (2.2.5b, 2.2.6b, 2.2.7b), to get:
++

At f[21a +0x + 2iy I ]y (-h < z < 0) (2.3.7)

18



2 - G*21 2 t fo (z - 0) (2.3.8)21 21 g Ot1  0

021 = 0 (z - -h) (2.3.9)

z

For solvability of 421, we must have:

s 0 - x1 - P yl)  (2.3.10)

where

_ I_ A 22(2.3.11)

(cf. Mei (1983, p. 52)).

The propagation of so  is found in the same way. It is:

s = so (tI+ II - vy1) (2.3.16)

We stress that the details of s are still unknown, only the dependence

on xl, yl, and t I is fixed. Further information must await the study of the

neighborhood of the body where evanscent modes are important.

2.4 The Long Waves Away from the Body

We now turn to the long waves. They are associated with the zeroth

harmonic of the potential, and of the surface elevation. Due to the intro-

duction of stretched coordinates, it is the first order slow potential that

gives rise to second order free surface displacement

I 12 = 0(C2 (2.4.1)g t 10 - C 410ltl

We shall proceed to find the governing equation for 010.

The interaction of short period waves and long period waves is different

in open water, over large horizontal scales, from that in regions of wave

generation, such as the neigborhood of a floating body, a depth

19



discontinuity, or other structures, where evanescent short waves exist. Each

region will be studied separately and the resulting solutions will be matched

asymptotically to determine their values. The region where the evanescent

modes are important - that is - within a few short waves from the wave

generation area - is referred to as the 'near field'. We denote the

potential in the near field by

0 - 0 kx 0(1) kxI << 1 (2.4.2)

The region in which only propagating modes need to be considered, a few wave

groups away from the wave generation area, is called 'the far field' and the

potential there is denoted by *
* - kx >> I kx I . 0(0) (2.4.3)

see Figure 2.1.

With this notationl we shall study separately the specific characteris-

tics of the potential in each region.

The short scale variation of 010 is found by collecting the zeroth har-

monic from (2 .2 .5a), (2.2.6a) and (2 .2 .7a):

AfIO 1 0 (-h < z < 0) (2.4.4)

010z - 0 (z M 0, -h) (2.4.5)

The eigenfunctions for these equations are:

gn(X, y) cos --- n - 0, 1,... (2 .4 .6a)

where

(Ah - n 2 w2 /h 2 ) gn = 0 (2.4.6b)

For all n * 0, the solutions decays exponentialy away from the near

field. We conclude that +10, the far field component of 410 is independent

20
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of the short scale (x, y, z):

010 M 010 (xlt y1 f t1 ) (2.4.7)

Let us now seek the governing equations for *10, mainly from (2.1.3).

To second order in e, *1Oz is zero at (z=O). However, by integrating

(2.1.1) from -h to 0 with respect to z, and using (2.1.6), we find:

0z zO f *z dz=- 2 dz (2.4.8)z zOM-h -fh V

also
2 2 2

vh ]30 V 1 0 + (Vh" VI + V1" Vh)P20 + Vh "30 (2.4.9)

where V1 -(=/aX 1X, a/ay l)

The first term on the right hand side of (2.4.9) is only a function of

the long space scales (xj, y1 ) while the other two terms are functions of

short (x, y) as well. The third order zeroth harmonic of (2.1.3) is

(g Oz)30 + 10t 1tI (zO)

We substitute (2.4.9) into (2.4.8) and the resulting equation into (2.4.10).

The long spatial scale component of (2.4.10) is thus given by:

2
o1ttI - gh V1 0 (2.4.11)

On the right hand side of (2.1.3), the long scale component of {0[(O 3 )x],

0[(0 3)y]1 is of order O(e') while the zeroth harmonic of {O(0 3 )t]j is

0(e4 ). The third order zeroth harmonic of the other terms on the right hand

side of (2.1.3) is

22



[-JV# 1 2 ' + a * 11 *1+ *)]

(2.4.12)

- {[v,(vh *11 '0 11) + Vh(Vl O11 i0 *I1)] + *1

We note that in the far field, in the absence of evanescent modes in (2.3.4),

the terms of (2.4.12) have components of the form:

(S S* e 2 cx + S ,12  18-1

Clearly, only the last two terms contribute to the long spatial scale compo-

nent. This means that *10 is induced only by the self interaction of each

propagating short wave with itself. Cross interactions between the propagat-

ing modes, or with the evanescent modes, give rise to higher order, short

scale waves. In the second square brackets of (2.4.12) only the first term

is purely long scale in space, and the last term is discarded since it

depends on short space scale.

When only the self interaction terms are taken on the right hand side

of (2.1.3) the result is:

S - v 2 f 2 ( a2 _k 2) a_ - 2 -
2  y

Ol 1t I tf1(1) [( at1  ax1  ay 0~i
(2.4.13)

+ f2(0) [(a2 _ k2 )  a t+2wa ax 2  y L Is-12
+0(0 at1I a x1  ay 0

which is the differential equation governing the far field slow potential

* 10 (xl, Y1, t)"
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An alternative way to arrive at Equation (2.4.13) is by observing that

the total second order, zeroth harmonic surface elevation (from Bernoulli's

equation (2.1.2)) is:

20 - g [lot + v 11 * Vil1 - (a Ol 11 +) (z = 0) (2.4.14)

Let (h + t) U denote the horizontal flux across the fluid column and expand

it into orders and harmonics:

- V = n U e (2.4.15)
(h+;) -h nl m- -n

then since = 0(e2),

0

hU2 0 ' hV 1 Oo + (;11 Vh Oil + *) Iz=0 + f Vh 020 dz (2.4.16)
-h

In the far field Vh20 is zero (see Equation (3.3.23)).

When the long scale parts of (2.4.14, 2.4.16) are substituted into the

equation of continuity:

;20t + hV1 • U2 0 = 0 (2.4.17)

where the overbar stands for the long scale component, the *10 terms make up

(2.4.11) while the terms due to the short waves make up (2.4.12). Hence, the

wave equation for 10, (2.4.13) can be retrieved. Finally, a third and more

formal way to obtain (2.4.13) is by studying solvability conditions for *30;

this is lengthy and will be omitted.

The form of (2.4.13) can be further simplified. By making use of the

relations for the propagation of the wave envelopes (2.3.10) and (2.3.11),

(2.4.13) becomes:

SghV f 2(0) [a2 _k2 _ 2w(ap+yv)][I8 I2 + (2.4.18)
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which is hyperbolic. Finally we write:

2 2

aU + Ykv a +__- Y k/C (2.4.19)
g gg

(2.4.18) then becomes:

10t t -ghV 2 f2(0) [ 2 _k 2  2 w k/Cg][1S+12 + IsoI 2jt (2.4.20)

101 1 1

This is a generalization of the theory of Longuet-Higgins and Stewart

(1962, 1964) for a single wavetrain.

The wave Equation (2.4.13) or (2.4.20) governs the long wave in the far

field. The specific solutions will depend on the particular problem at hand

and will be determined by matching to the nee .,Id. In the following chap-

ters we shall study a few examples of the application of the present theory

to problems that involve wave propagating in different direction at the same

location.
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3. SLOW SWAY OF A FLOATING BODY

3.1 Introduction and General Considerations

We first deal with the slow motion of moored floating bodies in slowly

varying waves. The linearized theory does not account for low frequency

responses due to narrow banded incident swells. It has been observed, how-

ever, that such responses exist, and can be very large. It is also known

that the resonant frequency of a mooring system usually lies below the swell

frequencies, while it can fall inside the range of the lower, modulational

frequencies.

In general, a floating body has six degrees of freedom. Among them,

three modes of motion induce buoyancy restoring forces and moments. These

are: heave, pitch and roll. To leading order, the buoyancy forces and

moments are proportional to the displacements. For example, a heave motion

with amplitude H will induce a buoyancy force with amplitude -pgRAwp, where

A WPdenotes the water-plane area. H can be large only for a bottle shaped

body, on which we shall comment later.

For a body that is not bottle shaped, the only interesting slow motions

are horizontal: surge, sway and yaw. We shall examine a sway problem to

illustrate our approach. The geometry chosen is that of a rectangular hori-

zontal cylinder in beam seas. The cylinder axis lies on the y axis and the

waves are incident from (x + -0) (Figure 3.1). The problem is then two

dimensional, with

/ay =0 (3..)

for all quantities.
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We assume that the body performs sway motion only, to the leading order,

at both fast and slow time scales. This assumption simplifies the presenta-

tion and will be shown to be valid for some cases. Computed results for the

general motion will be presented in the other cases. The mooring is modelled

by a linear spring.

The wave field is coupled with the motion of the body through boundary

conditions on the body surface. The incoming waves are diffracted and

reflected by the presence of the body. Waves are further radiated by the

body motion caused by waves. The effect of sway is expressed by the kine-

matic boundary condition. Denoting the sway displacement by X:

Ox = Xt on S' {x = X(t) ± B; -D < z < } (3.1.2)

Oz = 0 on b = {z = -D; -B < x - X < B} (3.1.3)

S! are the sides of the body, which has breadth 2B and draught D (see

Figure 3.1). B and D are assumed to be comparable to the depth h which is of

the order of the wavelength 2w/k. The boundaries of the body at rest are

given by

= {x= ±B; -D < z < 0}, ;0 = {z = -D; -B < x < B}

The effect of the waves on the body motion is given by the dynamic

boundary condition:

MXtt + K0 = f P dz - f P dz (3.1.4)

S S

where M is the mass of the body and K0 is the elastic constant of the mooring

system. The right hand side is the hydrodynamic force where the pressure P

is given by (2.1.2). We shall see that the driving force for the slow motion
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(zeroth harmonic) is 0( 2 ). The magnitude of X depends on the mooring stiff-

ness: If K0 is O(e), X must be 0(c) (small displacement) in order to balance

the hydrodynamic force. This case is studied in Section 3.3. The mass of

the body is 0(1) so that the inertia of the body for the slow motion is O(e
3 )

since,

MX 2
MXtt 1 MXt1t (3.1.5)

It is negligible if X is O(e) (small displacement).

On the other hand, if K0 is 0(
2 ), X must be 0(l) in order to balance

the slow drift force. The body inertia is then 0( 2 ). This case will be

studied in Section 3.4.

As a special but interesting case, we shall see that large blockage by

the cylinder may give rise to large added mass and damping coefficients,

rendering X at O(e) regardless of the mooring.

The problem will be studied separately in the near field , within a few

short waves from the body, and in the far field, a few wave groups away from

the body on either side. We examine the form of 0 in the far field where it

is denoted *. Because of radiation conditions, the only waves in addition

to the incident waves must be propagating away from the body. Since the
equations for 011 are linear, (2.3.10) and (2.3.16) for s+ and s- may be

*1o 0 0n

written as:

+ X 1

s = A0 (t1 - Xl/Cg) s o RA0 (t1 + -) (xI < 0)0g (3.1.6)

s0 TA0 (tI - xl/C) ; so 0 (x1 > 0)

where R and T are complex reflection and transmission coefficients,
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respectively. We shall see later that they include both diffraction and

radiation effects. The equation for 010, (2.4.20), becomes:

ghOax JA 2(x _ C t IR Ao(xl C t)12
Olot 1t1- gh 1x 1  ax1 V 0~ g 1 + 01+g i

f02 (0) [(a --k )C +2wk] a IT A0(xl - Cg 12 (3.1.7)
0°° 9(° a)%x7 I' g0x °  1)

to the left and the right of the body, respectively.

The forcing terms produce waves which propagate at velocities Cg and

-Cg. There are also free waves which propagate away from the origin at

velocities (gh)1/2 and -(gh)1/ 2 . These are solutions to the correspond-

ing homogeneous equation. Formally, the solution can be written as:

0 (XI - C t ) + R (xI + Cg tI) + 010 (x1 + Vgh tI) (x < 0)
I g (x10-1Cg t 1 1

010 = I
T (X t)- ( >0)
o( 1  g 1  (x10 tl)

(3.1.8)

The values of ,(a) (a = I, R, or T) at (x1 = 0) can be obtained from (3.1.7)

and (3.1.8)

2 Ix ] - [1]
(a) ( 2 (0) 2 2 2 k X (R) - R 2] (3.1.9)

lot ~ 1 01  ( a i - ] gh/C -1 Cg I9(T)] 2

.10± will be determined through matching to the near field *10. In order

to perform the matching, we shall need the inner expansion of (3.1.8) as

(x I + 0) for (xI > 0) and (xI < 0), which is

I R

Ol0 - 0x- + -+ + t I  (x < 0)
10 g 0ogh 1 1 (3.1 .lOa)
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T +
T + o!10 + I t (

10 - [1 o + ]x1  0 *g -Vg-h I I (3. .10b)

where we have replaced derivatives with respect to x1 by derivatives with

respect to tl, expanding (3.1.8) in the form:

G - G(O) + xI G  - G(O) + x I G C(1
1 g (3.1.11)

We now turn to specific problems. The first case examined will be that

of slow sway of small amplitude (O(e)).

3.2 The Solution for the Fast Notion

When the mooring is somewhat stiff,

K0 = cK - O(e) (3.2.1)

the slow sway displacement (and the fast one) is

X - 0(e) (3.2.2)

which can be expanded into harmonics:

- n
X M I C n Xn exp(-imwt) (3.2.3)

n-I mm-n

The boundary conditions on the body (3.1.2 - 3.1.4) can be Taylor-expanded

about the rest position, S-.

At the first order, first harmonic, we get for the short wave potential,

$11:

*11 - -iWXll on SO  (3.2.4)
x
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* 0 on b0  (3.2.5)
z

-W2 M X ll =d-i zf oildz - f+ oll dz (3.2.6)

S 0S0

Together with (2.3.1 - 2.3.3) and the radiation condition, these equa-

tions define the problem for b,11 which is the near field of 011. Formally

these equations are identical to the equations for the linear, time harmonic

problem of a rectangular cylinder swaying freely in regular waves. This

problem was solved by Mei and Black (1969), using a variational method. We

shall employ the equivalent Galerkin method in order to solve for the dynamics

of the sway motion as well as its kinematics. To start with, we break the

problem down into a diffraction problem and a radiation problem.

The diffraction problem deals with a fixed body. We break it down

further into a symmetric and an antisymmetric problem. The analysis is con-

fined to (x < 0). Starting with the symmetric (S) problem, (2.3.4) becomes:

- k (x+-B)
S(eik(x+B)-k+Bn

* I = f a (e ) + R e- i k (x + B ) , + i a f e , (x < -B) (3.2.7)
1 00 Sninl n n

under the body, the potential has the form

11-A FO + j A F cosh Knx (x> -B) (3.2.8)
0 nu n n nn-i

For the antisymmotric (A) problem:

ao k (x+B)

A -fb(ik(x+B) ik(x+B) + nxB
f0b0 (e + RA e) + b e (x < -B) (3.2.9)n~n

n-fI n

A . B F x + B F sinh K x (x > -B) (3.2.10)
0 n-I n n n
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The eigenfunctions under the body satisfy (2.3.3, 3.2.5) and are given by:

F0 = (h-D) /2; F n /2/(h-D) cos K (z+h), n - 1, 2, ... (3.2.11)nn

RS and RA are the reflection coefficients.

There are two continuity conditions that apply at the boundary between

the fluid region under the body and the region to its left: both the poten-

tial *11 and *11 must be continuous. Let us define:

1 A S_
UA = 1x ; S (x - -B) (-h < z < -D) (3.2.12a)

= 0 = 0 (-D < z < 0) (3.2.12b)

UA and Us are the complex amplitudes of the horizontal velocity. Using

the orthonormality of {fn} and that of {Fn} we can express {an}, {An}

in terms of Us, and {bn}, {Bn} in terms of UA:

-D -D
a 0  ik(I'RS f !U Sf 0 0 =ik(l1RA) f UA f 0 dz

(3.2.1 3a)
-D -D

a = I-" f U dz; bn " fUA Fo dz (n > 1)
n -H n -H

D
B0 = f UA F0 dz

-H

(3.2.13b)

A -D -D
n KsinhKB f U F dz ; B K hK B UA F dz (n > 1)

n n -H n n -H

A0 does not affect, hence, cannot be determined from US.
U S •

We may now use (3.2.13) to write down the continuity condition on S

A
*11 at (x - -B). Eliminating RS (or RA) and keeping a0 and b0 , we

get:
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-b00f f dz' G (z,z') UA (z) C-h < z < -D) (3.2.14)

-h

A F-2 f -D S
A0 F0 2a0 f0 -f dz' G (G,z') U s(Zt) C-h < z < -D) (3.2.15)

-h

where

G (zz 0 0k + n k + 0~ F (Z) f (Z')

n=1 n

(3.2.16)

CO coth K nB ]F n(z) F n(z')
+ 1 [ tanh K B K

Using the Galerkin method to solve this integral equation, we approximate US

and UA by:

N
US = - IK AnF nsinhK B (3.2.17a)

n=

N

UA =B 0 F 0 + I K nB nF ncosh K nB (3.2.17b)

Multiplying (3.2.14) by {Fop,... FN} and integrating from -h to -D with

respect to z, we get N+I equations for {BoBlKlcOshKl,...,BNKNCOShKNBI.

Multiplying (3.2.15) by {Fi,...,FN} we get N linear algebric equations for

{-AIKisinhKnB,..... .ANKNsihKNB}. Details are given in Appendix A.

Having obtained an approximation for the velocity (x - -B) we can determine

RS, RA and the force on So from (3.2.13).

The diffraction problem for a wave incident from the left is solved by

superposition of the symmetric and the antisymmetric solutions. We have:
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Rd (Rs + RA) Td (RS - R); F - F (3.2.18)
d A d S A A

here Rd, Td, and F are respectively the reflected wave, the transmitted

wave and the force due to diffraction, per unit incident wave amplitude, and

FA =i f A dz (3.2.19)

The solution of the radiation problem for sway is done in the same way,

with (3.2.12b) replaced by:

UA = V (x = -B) (-D < z < 0) (3.2.20)

where V is the complex amplitude of the sway velocity (the sway potential is

antisymmetric), see Apr. ,,'x A for details.

Having found the ddded mass, U, and the damping coefficient, X, for the

swaying cylindpr, (3.2.6) becomes:

[-W 2 (M+U) - iWXl X11 , A FA (3.2.21)

for an incident wave amplitude A. If the left-going radiated wave has complex

amplitude Rr for a unit amplitude sway we find that

R = Rd + Rr Xl/A = {Rd + Rr*FA/[-W 2 (M+P) -iw'll (3.2.22)

T -i Td - Rr X1i/A T d - Rr'F A /-2(M+P) - iWXll

As a special case, we shall be interested in a body which extends the

entire sea depth and slides on the bottom, that is:

D - h (3.2.24)

For this case, we obtained an analytical solution for the combined diffrac-

tion radiation problem of 011 (Agnon & Mei 1985a). This solution is given in

Appendix B.
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As another interesting special case, we consider a narrow gap between

the bottom and the body:

h - D - O(ch) (3.2.25)

In view of the narrowness, *11 in the gap represents a uniform flow which

depends on the pressure gradient between its two ends:

-aP/ax = -iwp [cill (B, -h) - eiPH (-B, -h)I/2B = 0(E) (3.2.26)

The effect of this flow, when multiplied by the gap width, amounts to an

O(E2 ) flux. It is negligible outside the gap since it is equivalent to an

O( 2 ) sink-source pair. The potential outside the gap, iJ1, is then given to

order O(e) by the solution in Appendix B for a sliding body, as if the gap

did not exist.

We now turn to the slow sway.

3.3 Slow Sway of Small Amplitude

The slow potential 0 which in the near field is denoted by *10, is

governed by (2.4.4) and (2.4.5). For the boundary condition on the body, we

derive the second order zeroth harmonic from (3.1.2) - (3.1.4). Expanding

(3.1.2) about S we get:

'x (S±) = qx (S±) + x X+ 0( 2 )  X (3.3.1)

where Ox, *xx on the right hand side are evaluated at S which are the

mean positions of the side walls.

The second order zeroth harmonic component is:

'10xI + 4'20x + (@ixx Xll + *) =X (on S ) (3.3.2)
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where X20t is zero, since

X2 0 ' X2 0 (t1 ) (3.3.3)

To find the dynamic boundary condition, we note that:

d2  3 = O( 3 ) (3.3.4)
dt2  Xlo It t I
( S ± ) = -t*(SI) + *tx X + O( 3 ) (3.3.5)

f t dz t (z=0) C + O( 3 ) (3.3.6)
0

and

1 2f z dz -- (3.3.7)0

The integral of the pressure on S! will have contributions from integration

between -h and zero and from integration between zero and C11. The contri-

bution to the latter due to the quadratic terms in the expression for the

pressure (2.1.2) is 0( 3 ). The only contribution at O(c2) is that evaluated

in (3.3.6), (3.3.7).

Hence, the second-order, zeroth harmonic of (3.1.4) is:

St * *

KX = - IP - P20 d z - f+ P20 d z + 6(i*lI ;11 + *) + 6(gll C ) ]  (3.3.8)
10~~ dz + 0 ~ wp 1  ~ 6g 1

So S

where

P2 l I 1 + *l + *) + gz (3.3.9)

(from the Bernoulli equation (2.1.2) and from (3.3.5)),

and 6G = G(-B, 0) - G(B, 0) (3.3.10)
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Equation (3.1.3) simply gives:

20= 0 on b0  and (z = -h) (3.3.11)
z

We note that the kinematic boundary condition (3.3.2) couples *10, whil

is a function of long spatial scale, with i 2 0, which is a function of short

spatial scale. The right hand side of (3.3.8) (see also (3.3.9)) can be

split into contributions due to *10 and p11. Since *11 is formally the same

as *ii for a regular wave train, the terms involving *11 have the same form

as the terms in the expression for the steady drift force in a regular wave-

train. In Appendix D we evaluate these terms and obtain an expression which

agrees with that obtained by Maruo (1960), by Newman (1967) and by Longuet-

Higgins (1977), using conservation of momentum and maintaining that there is

no energy absorbed by the body. The contribution of the short waves is:

pg IA 12 I12 C(3.3.12)
I

where A, the amplitude of the incident short wave is given by:

2i f 0 (0)

A = A (3.3.13)
g 0

I
A 0 is the amplitude of the incident short wave potential 011 and

(C= w/k) is its phase speed. Equation (3.3.8) can now be written as:

KX* -[ f 4 10 dz - f+ lodZ t I (3.3.14)

S 0S 0

The form of *10 in the near field will depend on the specific geometry

of the body. Denoting the gap width by H, we distinguish among three cases,

according to the width of the gap between the body and the bottom:
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a) large gap: H / h = 0(0),

b) small gap: H / h = 0(c),

c) no gap: H = 0.

These three cases are studied in the following subsections. Each case

represents a different asymptotic limit. Together they give a picture of the

dependence of the body's response on the size of the gap.

3.3.1 The Large Gap Case

A geometry common in practice is one in which the gap between the body

and the bottom is comparable to the water depth.

The variation of *10 with respect to (x, z) is governed by Laplace Equa-

tion (2.4.4) and by homogenous Newmann conditions on the mean free surface

and the bottom (2.4.5). The flux through S, 
2)

(3.3.2), and the flux at the matching boundaries to the far field

S {x, z I << kx << , h < z < 0} (3.3.15)

(see Figure 3.2), is 0(s 2) because of (3.1.10).

Since the cross section of the gap is 0(1), the flux through it, which

is the horizontal gradient of the slow potential is Vhcl 10 " It must be

matched to the far field according to

Vh 0€10 = O(C2  10x /H) - O(e ) (3.3.16a)

Hence, the spatial variation of the slow potential in the near field with

respect to the short scale is second order in e, except in the vicinity of

sharp corners. This is in agreement with the 0(c) kinematic boundary

condition:
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0 0 on S (3.3.16b)

Thus, *10 is only a function of time almost everywhere in the near field:

I0 - *10 (tl) (1 + O(e)) (3.3.17)

Integrating across the hull, we get

f *lot dz - f *lot dz 0 (3..18)
- 1 +
S0  0

The dynamic boundary condition (3.3.14) becomes:

K Xl0  pg IA! 2 1R12 C (3.3.19)

Formally this result is the same as that for the steady drift motion in a

regular (unmodulated) wave train, and agrees with Newman's (1974) theory, in

which the slow drift force is approximated by the steady drift-force form-

ula.1

The present theory allows us, however, to find the long wave field, and

the vertical force as well. To determine the wave potential we match the

slow potential and its gradient - on both sides of the near field - with the

corresponding quantities in the far field. Matching of the potential gives:

*10 (0, t1) = 410 (t) = ho0(0, t1) (3.3.20)

To the far field observer, the near field shrinks to a line at (x1 - 0)

across which the potential *10 is connected via *10. Combining (3.3.10) and

(3.3.20), we have:

+lO(tl)- I(t1 ) R 40 (t1 ) T 00( *lO(t 1 ) (x1 = 0) (3.3.21)

I In the large gap case, large slow sway is possible (for weaker mooring).
This will be studied in Section 3.4. The results presented there
include (3.3.19).
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In order to determine the unknown T10, 010 we need a further condition on the

jump in 3 10/axj. This condition is related to the horizontal flux. At the

second order zeroth harmonic, the flux across S + where kx >I and x, ( I is

f dz a + dz (3.3.22)

_h ax S+ z=ax -h ax
S+ c

This flux should be matched to the far-field flux:

f -0 a,1x 0  + + 41 (3.3.23)
-h x1=0+ ax 1x I=0+

z=0

The overbar stands for averaging over a short period 2 /w and short spatial

scale 2w/k. We now insist that (020x + 0) as ( x{ + o) so that

0(x 1) -1
fX020 dx = 20 = 0(0) and not O(e ) as x = 0(0/)
0 x

In the near field, however, *20x may contain a constant term. To evaluate

this term we write the governing equations for *2 0 . From (2.2.5b), (2.2.6b),

(2.2.7b) and (3.1.3), we get:
a2 2
- + az 2 ) *20 = 0 (-h < z < 0) (3.3.24)
ax 3z

-= 0 (z = -h) (3.3.25)
3z

*20 *
g = -[ l lx + ] gh Vh.U (z = 0) (3.3.26)

42



where U - (UV) is defined by:

ghU - [iwllVh*ll + *]zO (3.3.27)

The kinematic condition on the body is obtained from (3.3.2), and is:
*

-(X1 1  1 + *) + X on S (3.3.28)
x xx 1

Thus *20 accounts for the short scale variation of the slow potential. We

must now find the last term in (3.3.22). It turns out that it is not neces-

sary to solve explicitly for *20. Because of Laplace Equation (3.3.24), we

may apply Gauss' theorem to *20 in a control volume that is bound by the sur-
+

faces (z = -h) and (z=0) on bottom and top, the surfaces S. and S_. on the

right and left, and the rest position of body the surface So (see Figure

3.2). We shall write the flux of *20 through these surfaces in terms of U

and add them up to find the value of the last term in (3.3.22).

By Gauss' theorem,

-B o
If - f + f - f ]dz * 2 0x + [f + f ] *20z dx

S+ s- S + - C B z -0
00

(3.3.29)
B G+ f *20z dx - I *20z dx 0

B I z - -D -a z - -h

Now, the integrals along the free surface are

-B - -B G -B
[f + f ] *20z dz - h(f + f ) Ux dx - h UJ + hUB (z-O) (3.3.30)

Go B -00 B 1m B

after using (3.3.26).
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The integrals along the vertical walls of the body are

(f - f )dz *20 -{f - f } [X11 *llxx + *]dz + (f - f)X 0  dz
+ - + - + lo
S0  SO S SO SO S0

o 0 0 0 0 0 (..1(3.3.31)

Since I = -*II  we have:
xx zz

0 0 0
f (X11 *1 + *)dz - [-X1 l f *11 dz + *1
-D xx -D zz

• iW B
S(-x11 * 11 (_B, 0) + *) = (- - I p11 (_B, 0) + *)

z x

= -hU(±B) (3.3.32)

2
(making use of * = 4, at (zfO) and 4, -iWX at (x = ±B)).

11 g 11 11 11
Z K

When we combine (3.3.23) and (3.3.32), we get an expression for the net

flux across the body through the gap (the body is rigid and impermeable):

-B +B
dz - dz - hU + D X -DX = hU

f~ 20 f *20 loB loB

s+ x x B B

Because of Equations (3.3.24) and (3.3.30) we get:

+B -B +B +ao
+ x dz - f 20 dz hU hU hU hU(

S S - +S -I

U(±-) are given by (3.3.27):

gh U(--) = - {iwA0f0 (0) [ikA0f0 (0)] + iwR A0 f0 (0) [-ikR A0f0 (0)J} + *

- 2wkjA0 2 (1-IR 1)f2(4) (3 .3.35a)
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gh U(-) - - {icA 0 T f 0 (0)[ikA0 T f o(O)] + *1

00= 2wokIA0I 2 1T12 f (0) (3.3.35b)

Because the body is freely floating as far as the high frequencies are con-

cerned, there is no energy transfer to the body; hence,

RJ12 + IT 12 _ , (3.3.36)

That is the energy carried away by the short waves is equal to that brought

in by the incident waves. Combining (3.3.35) and (3.3.36) we get;

U(+-) - U(--) (3.3.37)

We are now ready to match (3.3.22) to (3.3.23). The quadratic terms in

the two equations are equal, since 01 is continuous in the passage between

the near field and the far field. Matching the gradients of 10 and *20, and

substituting (3.3.34) and (3.3.36) we get:

0
+

1lOx I dz = f *20 dz - f *20 dz - hU(-a) -hU(-.) - 0 (3.3.38)
0 S +  x S +  x

From (3.1.9) and (3.3.36) we immediately obtain:

R T I
10 + 10 = f0 at (x1 , 0) (3.3.39)

Matching the gradients of 10 as they appear in (3.1.10), and using (3.3.38),

we see that the locked wave contribution is eliminated by virtue of (3.3.39).

We are left with:

(t) + (t) at (x1 . 0) (3.3.40)
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R

Using (3.3.39) we write the right hand side of (3.3.21) in terms of R

The left hand size is written in terms of *10, making use of (3.3.40). The

result is simply:

+1O(tl) 0 (tl) at (x. . 0) (3.3.41)

Thus, the free long wave propagating to the right is equal to the long wave

locked to the reflected wave group. Substituting (3.3.40) and (3.3.41) into

(3.1.8) and (3.3.20) we get:

4,o(t ) - 0 (tl) - fI(t 1 ) (x1 = 0 ) (3.3.42)

.i0 at (xI - 0) is the same as if the body were absent! This is similar to

the Froude-Krylov approximation in the linearized theory of long waves past a

small body.

As an aside, when calculating the vertical slow drift force, there will

again be terms due to *11, which are formally the same as those terms for a

regular wave and terms due to the slow potential, as in (3.3.8), (3.3.9).

The vertical drift force due to *10 for a general hull shape, is:

2 2 A (3.3.43)-p I f 10t I dx dy =-e Pi10tA

body surface t P

where Awp is the water plane area. As pointed out in the introduction to

this chapter, when the water plane area is 0(1), the heave displacement is

0( 2 ). The contribution to the heave-inducing force due to *11 and the

correction due to *10 are comparable, yet the slow heave is too small to be

interesting in practice. When the body is shaped as a bottle

A - O(e) (3.3.44)
p
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the heave amplitude becomes O(e), yet, from (3.3.43) we see that the effect

of *,n on the vertical force is O(e2), resulting in a negligible, 0(e 2),

effect on the heaving displacement. In contrast to the vertical motion,

there are cases where *10 may play an important role in the sway motion.

This happens when *10 varies appreciably across the body surface, as discus-

sed in the following subsections.

Numerical results will be presented later.

3.3.2 The Small Gap Case

When the gap between the body and the seabed is narrow, the analysis of

Section 3.3.1 does not apply, and the slow potential affects the slow sway.

This can happen when a ship is moored in very shallow water, which is only

slightly deeper than its draught and is encountering beam seas. We let:

H = h - D - O(eh) (3.3.45)

First, let us show that the heave and roll amplitudes, both fast and slow,

are 0( 2 ) and can be neglected. The body is forced by the incident and

diffracted waves, and is restrained by buoyancy and the radiated wave force.

For the fast motion, the forcing is O(e):

P - CO 1 O(e) (3.3.46)
t

and it is O(2) for the slow motion:

d 2 2 O( 2  (3.3.47)
-p dt 10 lo - P  lOt (

The radiated potential for the fast flow acts as an added mass; this added

mass is usually 0(1). In the present case, however, the narrowness of the
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gap makes the heave added mass and roll added moment of inertia much larger

- 0(C-1). Their dominant parts are due to the flow inside the gap. This

flow is primarily horizontal, since the gap is narrow.

Denote the fast heave and roll displacement by Z and 6, the associated

(Z) (6)
potentials in the gap by ( and ( , and the related added mass and moment

of inertia by pZ and 16, respectively.

(2) (e)
The equations of continuity for ( , (  are:

-H ,(Z) + (-iW) Z = 0 (3.3.48)
xx

(HO + (-iw) ex = 0 (3.3.49)
xx

Since Z is constant in x and Ox is linear in x.

(z) is symmetric and *(e) is antisymmetric, so that;

(Z) iz 2 (3.3.50)

() = - t ?x (3.3.51)

from which we find UZ and 10 to be:

B (Z) B3

Z 2 - 0 t dx = p = 0(3H) (3.3.52)
WZ -B

P B ,5 OCB (e) B5 -
i0 2 f *x dx = - = O(p 1 (3.3.53)

W 60 -B

Since w 0(), and the forcing is 0(e), the fast heave and roll displacement

are O(e/c-1 ) - 0(e2 ), and may be neglected.

For the slow heave and roll, the dominant terms of the restoring force

and moment are due to buoyancy. The inertia term being O(e3 ). For heave the

buoyancy force is
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-2BpgZ - O(Z) (3.3.54)

while the restoring moment for roll is

-g M m e0 O(e) (3.3.55)

where mc the metacentric height is assumed to be O(B). Since the forcing

for slow motion is O(U2), we find that the slow heave and roll, too, are

0(C2). Therefore, the only first order slow motion present is sway.

Because of the narrow gap under the body, strong blockage occurs. The

slow current under the body becomes large (O(e)) and there is a large pres-

sure gradient due to the potential difference in *10 between the two ends of

the gap. Apart from the difference in *10 between the two sides of the gap,

the flow in the gap has only an O(e2) effect on mass flux which does not

cause any additional effect on *10.

In order to determine *10, we define *0 to be the sum of e*I0 and 020:

+ e 2 (3.3.56)

*0 is the long scale slow potential in the near field. The slow potential

has a component with short length scale: 2w/2k, and a component with a long

scale: O( -1 2w/2k). The kinematic boundary condition on the body, (3.3.2),

combines both long scale and short scale zeroth harmonic potential. The long

spatial scale component can be separated by integrating (3.3.2) along S+

keeping only the propagating modes contribution, and not that of the evane-

scent modes that give rise to short scale *20. The integral of the last term

on the left hand side of (3.3.2) was evaluated in (3.3.32). The long scale
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part associated with the propagating modes is given by U(±-) at the far

field, which was given in (3.3.35) and (3.3.37). We note that U(±-) is just

Stokes' dritt.

We are now ready to write the resulting kinematic boundary condition on

the body. Separating the long scale component of (3.3.32) we get

0

.*~1 1 1011 x + *)dz = -hU(±B) = -hU(±=) on S0-D

When substituting this result in place of the last term of (3.3.1) averaged

over So and recalling that the difference between h and D is O(e), we get the

boundary condition for *0 defined in (3.3.56), in the form:

*0 X - U(±.) on S (3.3.57)

' 0 also satisfies the rigid lid boundary conditions:

0 0 (z 0 O, -h) and on 10  (3.3.58)
z

Recall that both *10 and *20 satisfy (3.3.24). *20z is equal to zero

on the free surface while the short scale part accounts for the inhomogeneous

term in (3.3.26). With (3.3.57) and (3.3.58) *0 is the potential for a

steady flow ev past a body moving at a steady velocity Xljt! -U(±-), with

a parametric dependence on t1 .

It is known for a stationary body in long waves that the outer approxi-

mation of the near field in terms of (x" = x - X0 ) is

*0 - Q(t) + E(v - xlot! + U)x" ± C(v - X10 tl + U)c
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where c is the blockage coefficient. By a Gallilean transformation, we go to

the stationary frame of reference in which the body is moving at the velocity

XlOtl - U. The outer approximation of the near field potential must then

be

0 ~ Q(tl) + [v - Xlot + UI(±ec) + vex (x + (3.3.59)

where Q is an unknown integration constant and cv is the unknown current,

Ox, at x + ±w. c is the blockage coefficient which is known to be a large

quantity

Bh + O(logc) O(C- ) (3.3.60)

(cf. Flagg and Newman (1971)).

The outer expansion of the near field, (3.3.59), has to be matched to

the inner expansion of the far field, (3.1.10). This matching gives:

Q(t 1) + [v - X 0 t  + U] cc = [ 4I +

Q(t1) + [v - X + U] cc - [ I + + IltI x 10 1= 1 0

(3.3.61)
I R -

v M - i- + n-0 + fo

T +

v M [- C0- -10t
g 9 ghtlI

Using (3.3.37) and integrating the last two equations in (3.3.61) with

respect to t1, we eliminate Q and v with the results:
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+i -I (Xl = 0) ,j.3.62)

and

T +

T + I R +10 10] (
€00 + - ( + 0 )0 2cI{[- -- -- It -lo +X

g /gh I 1

where c, R Ec.

The large blocking by the narrow gap, causes a jump in 010 = *I0 between

the two sides of the block given by (3.3.63), although the gradients of the

slow potential, on either side of the body, are O(e 2). This jump is impor-

tant to the dynamic boundary condition on the body, (3.3.14), which can be

written in terms of the far field potentials. Since *10 does not change

appreciably on either side of the body. This gives:

+ T I R -1 12 C ( l =0
K X10  ph[ o* + -1o (4 10 + * o + 10 )t 1  + pg JA . .I -  o.0)

(3.3.*64)

We now wish to eliminate 010 between (3.3.62) and (3.3.63). From (3.3.62)

and (3.3.64) we get after using (3.3.37):

+ KX1 0  R 1 II2 2 C

-10t1  ph + 2 0ot1  hJA IR -A (3.3.65)

Differentiating (3.3.63) with respect to tI we can substitute its right hand
+

side in the left hand side of (3.3.64) and finally substitute for O10t 1

using (3.3.65). This yields:

K K
lot1 t 2phlgh lot 1 + 2phc 1 X1

(3.3.66)
C 2 C C

-[-g +1- I I) .I-+ R R I ]-JAI'
1ghI gh - C 2 2h ati 2he 1

g
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where

2C
C 2 (3.3.67)

is a factor appearing in the radiation stress. Equations (3.1.6), (3.1.7),

and (3.1.9) have been used (details are given in Appendix C). From (3.3.65)

we get the free surface elevation associated with *10, through the Bernoulli

equation

± +
20 -g *lOt (3.3.68)

In the limit as H + 0, c I + -, the last term on both sides of (3.3.66) vanish

and the resulting equation may be integrated with respect to tj, to give:

KC 2 C2

Xt + K X _ ( 9 R2 1 + I - IR12 ) Cg & (3.3.69)t 2ph-gh- C 2 2h(3.3.69

Equation (3.3.69) is identical to the equation for a sliding block (Agnon and

Mei 1985) to be discussed in Section 3.3.3. At the other limit, as the gap

becomes large, H = 0(0), cl = 0(c) and the last term on each side of (3.3.66)

becomes the dominant term, we get:

K X10 ,pg 9 1R 12 JAI' (3.3.70)C 0
Equation (3.3.70) is the same as the result (3.3.19) for a wide gap. There-

fore, (3.3.66) may be regarded as practically valid for all gap widths.

We shall now solve (3.3.66) explicitly to study different wave envelope

forms and their effect on the slow sway, as listed below:

a) A Steady Sinusoidal Envelope

b) A Sudden Start of a Sinusoidal Envelope

c) A Gradual Start of a Regular Wave

d) A Sinusoidal Wave Packet
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a) A Steady Sinusoidal Envelope

Let the incident wave amplitude be:

A = a sin OtI  at (xI = 0) (3.3.71)

The solution to (3.3.66) is then:

-21jt 1

X Re[X'0 e + Xj0I (3.3.72)

where

2 -D/(-4Q 2-_ 21jh + K' )/2 (3.3.73)
10 ~2phgh 2hc

X .9k K C IR 2 (3.3.74)
i 2 K Ca

and

C 2 C
D 21f2( g I 2  I R(2  gT S a2 + ~ IR a2  (3.3.75)

1 g-h gh - C2  2h C 2hc

In Figure 3.3, 0 - hjXj0 /a2' the normalized slow sway amplitude is

plotted versus a 11/w, the wave modulation ratio, for three values of K.

The resonance peak occurs near 2a/w = A/2phcl. 2phcl may be regarded as the

apparent mass. X;0 will be discussed in Section 3.3.3 and plotted in Figure

3.5.

In all the computations presented in this section kh - 1, M = M/ph2 - 1

and c = c1 /h = 1. The nomalized elastic constant is K =- K0/(cpgh). A

corresponding choice of physical parameters would be, depth h = 10 m deep,

the vessel width B 1 10 m, the wavelength X - 2 w.10 = 63 m which corresponds

to a wave period of 7.2 sec.
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The gap width is 5e/i - 0.5 m if e is 0.1, and the spring constants are

0.1(0.5, 1, 2).10.10.1 = (5, 10, 20) 103 Newton/m per meter length of the

cylinder. Each unit of the abscissa (W/) translates to 72 sec. period of

the modulation envelope and each unit of the ordinate X' translates to slow-10

sway amplitude of - I m for incident wave of 3 m amplitudes (or 6 m wave-

height) and is proportional to the square of the waveheight.

In nondimensional form, Equations (3.3.73) through (3.3.75) become:

SD/(_42 2 + M-)/2 (3.3.73')10 2

-L RI 2 (3.3.74')

D = -in (C 1R12+ 1-IR2) - g  (3.3.75')
-- -- I-C2 -1--g

where

C 9 =C/9Vgh, C=_CV'gh-g g ' _

and

b) A Sudden Start of a Sinusoidal Envelope

Let

A = H(t I) a sin Pt (3.3.76)

where H is the Heaviside step function. The solutions of the homogeneous

equation corresponding to (3.3.66) are:
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axt 10 'te

with

-K K 2K 1/2 (..7
a1,2 =4phigh 16p 2h 2gh 2 phc ]337

and we assume that the square root does not vanish so that a, * a2 (when

al a2the solutions are e at t1 and ti ealt Ith results are not

qualitatively different in any significant manner). In nondimensional form,

Equation (3.3.77) becomes:

2 8K 1/2
R112 =[-K ± (K _ -c 1)/4

With X10(0) =XjOt 1(O) 0 we get:

= a2 e -a 1 e
X10  ReX 0 1(M 2 -ad)

(3.3.78)

-21nt 1  (a2 + 21ij) e a - (a1 + 21n) ea
+ x o e a2 -a cL11

where X , and X" have been defined in (3.3.73) and (3.3.74)
10 10

c) A Gradual Start of a Regular Wave Train

Let

A =a [H(t 1) H(jE-j - t ) sin QZ t1 + H(t1 -j) (3.3.79)

Then X10 is given by (3.3.78) for 0 < tj < ir/2fa and

x 0,Re r2 0 a2  a 1 e
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a e (tl-r/ 2fl)

+ 2 X10 (7/
2a) - Xlotl (w/2 a)I ea 2 _ al (3.3.80)

a 2(t1- 7/2al)

[ 0 (r/2C2) -J (w/2p)] e - W <t/)

as (t, t -) XIO tends to 2X 0 which is the steady drift force and is also the

value given by (3.3.19) and (3.3.70).

d) A Sinusoidal Wave Packet

Let

A = H(t1 ) H(-! - t1 ) a sin a t1  (3.3.81)

then X10 is given by (2.92) for 0 < t I .</ai and

a I(t -T/O)

X0 Re{[a 2 X10 (1/KZ) lot ( e/)] a - a
1 2 1 (3.3.82)

a 2 (t I-7r/ z)
_[a I X 0 (7/11) _ Xl~l f) e a2 _1 <l} ( t )

In nondimensional form, Equations (3.3.78), (3.3.80), and (3.3.82) are modi-

fied by changing (a1,2 ) to n R to w n, and X0 and XiO to No and X'"
P)t 112;10 10 -1

In Figure 3.4, a typical example of the displacement X1 0 from (3.3.78,

3.3.80, and 3.3.82) is plotted versus nondimensional slow time, Qt,. There

is a considerable overshooting before a steady or a quasi-steady state is

reached. For the gradual start of a regular wavetrain (Case C), the over-

shoot can be an order of magnitude larger than the steady state value, where

010 has no effect. This transient drift force also alternates direction, and
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becomes large when directed both to the lee of the body and in the opposite

direction. The modulation ratio is 1 (P - ew) so that the envelope period is

72 sec for the parameters given in Case a. The normalized elasticity

constant is 1.

3.3.3 The Case of No Gap

Finally we examine the case of complete blocking. There is no

connection between the two sides of the body, which slides on the seabed.

This case was studied by Agnon & Mei (1985a). The dynamic boundary

condition, (3.3.57), can now be directly matched to (3.1.10), the far field

inner expansion, since there is no flow underneath the body, and the gradient

of *10 is uniform throughout the near field. The kinematic boundary

condition is now:

XlotI = 10x I  (Xl I 0) (3.3.83)

Combining (3.1.10), (3.3.64), and (3.3.83) we can eliminate 10 in the same

way that (3.3.66) is obtained in Appendix B to get:

x ++ R12 + 1 I  1 gg 0 (3.3.84)
lot 2phig-h o igh 2h gh - C2

g

which is (4.31) of Agnon & Mei (1985a) where the notation for S is different.

This is the differential equation for the slow sway of the body. The first

term signifies the effect of radiation damping, the second term the effect of

mooring, and the third term, the wave momentum flux. Because of the slow

motion, inertia is ineffective.

The general solution to (3.3.84) is easily found:

C (1RR2)+ I 2 -CgCgS)e d (3.3.85)

2
Vgh 2h(gh-C g
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where

8 K (3.3.86)

2 ph vgh

We can see immediately that if the mooring stiffness K increases, it

takes less time for the slow motion to reach equilibrium under persistent

forcing, or to decay when forcing is removed. Let us specify the incident

envelope to be such that

a sin OtI  (0 < t I < T)
A = { (3.3.87)

0 otherwise

where a is the maximum amplitude of the incident wave potential; then the

slow displacement is

-at  -1 -21ptI  -at (3.3.88)
e I- ReO - -) (e - e )]} (0 < t, < TI )

x10(t1) = { 1

X1 0 (TI) e (tI > T1 ) (3.3.89)

where

C 22Vgh C 2XIO g R2 + I - R2  K > 0S pga(

10 gh2 2 > 0 (3.3.90)
hCg

Note that is independent of 0, is inversely proportional to the spring

constant K, and is positive.

Let us consider three sub-cases:

a) A Sinusoidal Envelope:

If we let T, + c in Equation (3.3.87), then the incident wave envelope

is sinusoidal for all t, < . The limit for quasi-steady state Qt1 ) I is

X+ * + (j2, -/2
X10 (t1) 10  X cos 2n(t1 - 1) nt1 +- (3.3.91)
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where T is the phase angle: tan T = 21 (3.3.92)

The ratio 8/ measures the importance of mooring relative to radiation damp-

ing. Thus X10 oscillates about the mean -X 1 0. In Figure 3.5, the dimen-

sionless,10 - X10 h / a2 is plotted for three values of M. For comparison

the first-order high-frequency displacement X1 1 is also shown. Relative to

the mean, the amplitude of the oscillatory part is

£[ 2 2 -1/2
10O [1 + a-- ] (3.3.93)

which decreases as 8/a increases. Thus for tighter mooring, the body

wanders less. A typical history of X 10 (t), normalized by a 2/h, is shown by

curve a in Figure 3.6. Throughout Figure 3.6 we have chosen the modulation

frequency to be c times the short-wave frequency, namely a - w. We have

also set M -1 and K 0 - epgh-
-R -

The reflected 20 and transmitted -T travel outwards at the group

velocity. Their amplitudes depend only on R and are plotted in Figure 3.7a

for three different values of M. The radiated long waves which travel at

the speed /gh depend further on K through X10t ; their amplitudes are

equal by virtue of Equation (3.3.65) and are plotted in Figure 3.7b only for

K - pgh.

b) A Constant Envelope:

If we let the incoming wave have the form

A a sin Qt (0 < t I < /2) (3.3.94)
a (w/ 2 n < t1)
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Figure 3.7 Sliding Block: (a) Normalized Amplitudes of the Long Waves
T

Accompanying the Incident Group C20, the Reflected Group
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of the Radiated Long Waves Travelling at the Speed Vgh to
the Right 20 and to the Left 20" Normalization Length is
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we get in Equation (3.3.84) a constant forcing term when t1 > /2Q and the

solution tends asymptotically to X10 = -2X1 0 as follows:

X10  -2X 10 + [2X 1 0 + X10 (w/211)]e (3.3.95)

For 0 < t1 < w/22 the solution X 10(t1 ) is still given by Equation (3.3.89).

Note that X10 is negative, implying that the drift displacement is opposite

to the direction of the incident waves.

When a cylinder is floating or immersed so that fluid is allowed to

pass from one side to the other, the drift force due to normally and stead-

ily incident waves is known to be

pga 2 R 2 C /C (3.3.96)

and is in the same direction as the incident waves (see, e.g., Longuet-

Higgins, 1977). The corresponding displacement is just

2Xj0 f pg a2 1R2 1 C/CK (3.3.97)

It is different both in sign and in magnitude (see Figure 3.5) from -2X10 ,

the steady-state limit of X1 0 (see (3.3.95)). Does this contradict our

result?

Observe first that Equafion (3.3.97) can be gotten from Equation

(3.3.64) if one sets

t 0 (3.3.98)

In the long-time limit of a uniform wavetrain, the long wave described by

10 becomes a steady current. For a two-dimensional body that does not
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prohibit steady flow of water from one side to the other, Equation (3.3.98)

holds when viscous effects are ignored. Now, in the present example,

A010t I does not vanish; indeed, it also contributes a new part in the Jump

of mean sea level across the body, since

= A~t - IIIliV kizl -a(0110 ix + (3.3.99)

The second part A[ ] above can be calculated

2h I C 2*I # ga R2 (?-) (3.3.100)

which is precisely the mean sea level change across a two-dimensional body

if fluid passage is allowed (Longuet-Riggins, 1977).

To confirm our result, let us give a more physical derivation of the

steady drift force on a fixed plate which seals off all communications

between two fluid regions (x > 0) and (x < 0). We assume that the envelope

of the incident wave train grows steadily from zero to a constant value.

The fluid on the right is never disturbed. In the fluid on the left the

steady-state spatial average of the normal radiation stress in che standing

wave is known to be

2C =wee 1 2

xx 2i( - 2 ) 2SE where E = pg a (3.3.101)

The steady-state mean set-down is also twice that of the incident progres-

sive wave, so that the corresponding hydrostatic pressure is

hpg - 2SE (3.3.102)
I - C2 /gh

The sum of the two gives the drift force on the plate as t1 + c,
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¢2

hpg1 2 0 + )= -2SE ( 2 -) (3.3.103)Pg2 x 2E(I - C 2/gh gh - C 2 )  (330)

g gh-C

On the other hand, if we take tj + - in Equation (3.3.95) and R -I in Equa-

tion (3.3.90), we get the steady-state displacement whose product with K is

precisely equal to the steady drift force given by Equation (3.3.103). Thus

the mean set-down on the up-wave side is responsible for the negative drift

force.

In Figure 3.6 the typical transient motion X1 0(tj) is plotted as curve

b for the case where the incident envelope becomes uniform after the first

peak at Qtj = w/2.

c) A Pulse Envelope:

Let the pulse envelope have the total duration T1 - w/n. After the

pulse expires (at, > w), slow sway of the body gradually attenuates as shown

by curve c in Figure 3.6. The rate of attenuation increases with K through

$; see (3.3.89). The maximum of X1 0(tj) lags behind the peak of the inci-

dent wave envelope at nt, - w/2 . This is due to the time constant

1/8 a I/K.

To see the effect of the mooring force we plot in Figure 3.8 the effect

of 0/a for the same wave packet. For smaller $/a (or K), the maximum dis-

placement is greater but is realized later.

The long waves are particularly interesting for this case. As shown in

-I
Figure 3.9, 20, which accompanies the incident wave packet, is a solitary

depression (set-down) travelling at the group velocity. The reflected and

-R -T
transmitted wave packets are also accompanied by set-downs 20 and _T whose

amplitudes are simply related to the reflection coefficient R. Ahead of
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Figure 3.8 Effects of Elastic Mooring Constant on the Transient Slow
Displacement X1 0 of a Sliding Block Due to a Wave Packet for
M = ph 2 and kh = 1.25.
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them are the two long waves C20 travelling at speed /gh. Because X1 0 (t) is

pulse-like, X10t, and 2 must have points of inflection (cf. (3.3.65).

3.3.4 Comments on the Steady State "Set Down" and Drift Current

We wish to interpret the slow potential *I0 in the case of a uniform

wave train. It is known that for a uniform wave train there can be an

arbitrary second order mean free surface displacement and mean current (Mei

(1983)). This can be written as:

$10 = a,, + bt1

where a and b are undetermined. If we let the waves propagate onto

otherwise calm water, with the envelope of the waves given, say, by

(3.3.79):

A = a[H(t ) H(-L- - t ) sin Qt1 + H(t - (3.3.104)

or any other transient start of a uniform wave train, we find from (3.1.9)

and (3.3.13) that *0 will evolve to the form:

42 2k2 _ 2wk, X

2 ak - L2) +- (t - ) (3.3.105)
gh/C -1 g g

once the waves have reached their full amplitude.

The usual practice in treating uniform wave train problems is to

redefine the origin so that the mean set down is zero. We have seen that

the initial value approach resulted in different mean water levels on the

two sides of the sliding block contributing to a negative drift force.
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On the rotating earth, Coriolis effect will affect the steady state drift

current as shown by Ursell (1950). The Lagrangian drift U20 of (2.4.16) will

approach zero.

However, reaching this steady state lasts on a time scale comparable to

the Coriolis period, which is many hours long, and is much longer than the

time scale considered by us, hence we may neglect rotation in the present

study.

3.4 Large Amplitude Sway

In many practical situations, the mooring is very weak and the hydrody-

namic blocking is small. This results in a slow sway displacement much

larger thin the wave amplitude. It is no longer feasible to carry out the

Taylor exoansion about the rest position of the body; a different approach is

required.

Tria,.tafyllou (1982) has used multiple time scales and a moving coordi-

nate system to treat this problem, arriving at decoupled equations for the

fast and 31ow motions. He did not account for the long spatial scales asso-

ciated w th the long period motion. As a result the diffraction of the

locked lng waves and the damping by radiation of long waves were not

consider,-d.

We carry out the multiple scale expansion in both time and space for the

present problem, with a view to examining forces due to long wave diffraction

and radiation damping.

We assume,

H - O(h) (3.4.1)

then there is no large blocking, and

K0 M C
2K - O(e2 )
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so that

X 0(1) (3.4.2)

Let us write:

nn - imwt (3.4.3)X e X e

n-0 m-n nm

X0 = X00 is the slow sway motion of order unity; the corresponding velocity

is small,

aXo/at - C X O(e) (3.4.4)

We define a moving coordinate system which follows the slow motion X0 , in

order to study the fast potential, *11. Let

(x', z' ,t') (x - XO, z, t) (3.4.5)

be the moving coordinates in terms of which the velocity potential is

#'(x', Z'. t') (x, z, t) (3.4.6)

The spatial gradient does not change:

V'' - VO (3.4.7)

but the time derivative changes in accordance with the chain rule:

.' = t- Xot *x (3.4.8)

We define the near field as the region within a few short waves from the

body. Let us denote the near field potential by *':

4,' . I' (3.4.9)

and expand it into orders and harmonics as in (2.2.2) and (2.2.8):

cc n

- I n 1 4,nm (3.4.10)
n=1 m--n

for the first order fast potential *I1 we obtain:
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- 0 (-h < z < 0) (3.4.11)

2

- l 0 (z = 0) where a 9-- (3.4.12)

Illz - 0 (z - -h) and on b (3.4.13)

2

-W MX ip i f *l dz - f *11 dz] (3.4.14)

0 0
+

where SO are the mean body surface moving in tj only. These equations are

formally identical to those for 11 in Se'tion 3.2 and are also formally the

same as the equations for *11 in a regular wave train with no slow motion.

Therefore, the solution is the same as that obtained in Section 3.2 for a

body in regular waves. This means that the drift force, to the leading order

(O(C2)) is given by the "steady drift force" formula, Equation (3.3.12). We

point out, however, that at the next order (O(d3 )) there is a contribution

associated with the body velocity eXt 1 . This contribution can be computed

using the theory of a moving ship. Only a part of the effect of the current

can be attributed to the 0(e) Doppler shift of Equation (3.4.8). The

computation becomes more involved. We refer to Huijsmans and Hermans (1985)

who solved a similar asymptotic problem for a slowly moving ship in very deep

water. They found that the leading order correction, for a small forward

speed, is proportional to that speed. We do not calculate that effect and

merely write it symbolically in the form:

pg ' C2IAI2 eX ot O(e3) '
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for the leading order change in the drift force. This change is expected to

be proportional to the forward speed (or equivalently the current). Since

the changes occur in the second order potential, e2 2 1, the numerical value

of X' is expected to be 0(l). It might be larger at specific frequencies,

for some bodies. We shall see that this damping-type term can be of the same

order as the damping due to long-wave radiation and should thus be

considered. The physical origin of the present term, however, is due to

interaction of the body motion with the short waves.

Because the forward speed is small, O(e), the Doppler shift effect on

is negligible. The slow motion is related to 0, which is a function of the

long spatial scale x1 . Relative to that scale, X0 is a small quantity and

the change of mean position does not affect the slow motion hydrodynamics at

the leading order.

We may therefore study the slow potential in the rest coordinate system

(x, z, t). This is different from the approach taken by Triantafyllou

(1982). The equations for the near field potential *0 are:

A*O = 0 (-h < z < 0) (3.4.15)

= 0 (z = 0, -h) and on b0  (3.4.16)*00
z

The velocity of the body is larger than in the small amplitude slow

motion case, and is

E X 0(c) (3.4.17)
1

We discard from (3.3.2) the second order terms

Cu C [20x + 1X* + *)] 0 (2) (3.4.18)
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To the first order 0(c) the slow kinematic boundary condition is

*10x fi X0t .. S - (x = ±B + X0 ) (3.4.19)

The dynamic boundary condition is obtained in the same way as (3.3.14)

was derived for the small amplitude slow sway. Including the body inertia,

we write:

MX + K X - -p [ f *0 dz - f *j0 dzlt + pg JA 12 1R 12 Ca& (3.4.20)
Ott 0 S+ C

The slow potential *0 can be separated into two parts: The first part (0)

is a function of tI only and is the near field of the slow potential of

Section 3.3.1 given by (3.3.38) through (3.3.42). Its corresponding far

(1)
field i0 consists of the locked long waves which travel with the short wave

groups (I, R, and T) and of the free diffracted wave *I0" In particular,

satisfies

-0 on S (x- ±B) (3.4.21)

just as in (3.3.16b).

(2)
The remaining part of the slow potential, *0 , is related to the radi-

ated wave, satisfying (3.4.19) and radiation conditions that state that the

waves are outgoing from the body. 2) is simply the solution to the linear

problem for wave radiation by the slow sway motion. The order of *2) and

the corresponding f2) will be determined later.

The present case is different from the case studied in Section 3.3.1 in

that the radiation problem is important, due to the larger slow sway velo-

city. In addition to ) , we have *2)that is the potential of radiation

due to the slow sway. This potential will have the effect of an added mass
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and a damping coefficient cX. These are derived in Appendix E by using

matched asymptotics.

In the far field (2) is given from (E.14) by:

-2t tI  xl)

(g-2ip(t (X > 0)
({X 0  (x < 0) (3.4.22)

The force due to *) is O( 3 ) as shown for the identical *10 in Section

3.3.1. The force due to 2) is given in terms of the added mass and damping

coefficient at the low frequency 20:

2(U XOtltl + X Xot (3.4.23)

The introduction of the damping coeffiicient, eX, is made possible by

accounting for a free wave in the far field. This wave is radiated by the

slow sway, carrying away energy, which results in damping. When c - 0(1), it

is seen from (E.17) that eX is in fact O(c2 ). Multiplied by XtI it will1

yield an O( 3 ) contribution, while the rest of the terms in the equation of

motion are 0( 2 ). However, near resonance, where the inertia and elastic

force are nearly balanced, damping is important and serves to make the reso-

nance finite. This effect was not accounted for in previous theories, where

a rigid lid approximation results In using a zero frequency limit for the

slow sway which excludes radiation damping (Triantafyllou (1982)). The equa-

tion of motion for the slow sway is

(M + U) X0 tlt + X X + K X = pgA12 (IR12 -+ X'X0 I) (3.4.24)
Ot11tI O 1 1 O

where the last term on the right hand side indicates the third order effects

for which the details have not been worked out. Note that terms in (3.4.24)
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can be of different orders of magnitude. In particular V and X depend on the

gap width H which influences the blockage coefficient c. If H/h is 0(l),

then c = 2BD/h = 0(). It follows from (E.17) that X is O(e) and p is 0(l).

Damping is small. If the mooring constant is assumed to be O(e2) then Equa-

tion (3.4.24) predicts unbounded resonance at leading order. To obtain

finite response at resonance it is necessary to calculate all the 0(E 3) terms

which are tedious to work out. It is seen from (3.4.22) that when c is 0(0)

the radiated potential is 0(c) and is comparable to *(I )

t0

There is a situation where (3.4.24) can be used without adding higher

order corrections. This is when c is O(I/vc) which corresponds to an inter-

mediate gap. We also choose intermediate mooring K0 = 0(E3/2). From

(E.17) we see that p is 0(1/ic) and eX is O(s). Equation (3.4.24) is still

at order c2 and X0 decreases to O(jc). The damping term esXOt1 , increases

to 0(5/2). The damping due to the modification of the short waves,

cX'Xotl, becomes O(W7/2) (since X0 decreased to 0(Ie)).

In the results presented we shall use c - 0(I/Is) and neglect the higher

(2) (2)
order effect of A'. 2)and *0 are now O(Uc) as seen from Equation

(1)
(3.4.22) and are larger than (1)

In Figure 3.10 the value of the normalized X0 = hX0/a
2, the slow sway

amplitude for a periodic envelope is plotted versus the modulation ratio j/w

for various choices of the parameters. It is clear from (3.4.24) and (E.17)

that increasing c as well as increasing K will reduce X0" In Figure 3.11

transient responses corresponding to the inputs of Cases b, c, and d of

Section 3.3 are plotted. Equations (3.3.71) through (3.3.82) can be carried

over directly to the present case, with X1 0 replaced by X0. The only

modifications are:
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Figure 3.10 Amplitudes of the Normalized Slow Sway hfXoI/a2 versus
the Modulation Ratio S2/w; K/pgh = 0.5, 1.2. (A) kh = 1.2,
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1) X0 defined by (3.3.73) and (3.3.75) is replaced by
10

0,= _ !..K/[_(M + U)4n 2 - 21jx + K) (3.4.25)
06 2 C K

2) a1,2 of (3.3.77) is now given by:

a -X ± A 2 
- 4K(M + U) (3.4.26)P1 '2 - 2(M + 1)

The blockage coefficient corresponds to a cylinder that is 10 m wide and

has a 7.5 m draft in water of 10 m depth. The spring constant is E (0.1)

times that of Section 3.3 and a unit sway motion is I/c (10) fold larger: 10

m per unit for 3 m incident wave amplitude. We turn to the conclusions of

the present chapter.

3.5 Conclusion

The response of a floating offshore structure in slowly varying waves

depends on body geometry, mooring stiffness and wave characteristics. We

have directed most of our attention to the slow sway motion, which is

expected to be the largest, since it is not affected by the buoyancy force

and moments. By a multiple scale analysis we have been able to separate the

low frequency part of the second-order fluid motion from the high frequency

part. By the notion of near and far fields, we have shown (i) that the slow

drift problem can be s'uived without solving explicitly for any second order

potential and (ii) that the slow motion in the near field is accompanied by

the propagation of long waves in the far field.
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The sway response of the two dimensional body depends on the so called

blockage coefficient, which measures the obstruction by the body to the long

period current around it, and on the mooring stiffness.

When the mooring is not too weak, the slow sway is comparable to fast

sway, this was discussed in Section 3.3. In particular, when the blockage

was not large, the body's response was passive, in agreement with Newman's

(1974) generalization of the steady drift formula. We found that the long

wave field is independent of the slow motion. These results are expected to

be valid for three dimensional bodies that have 0(1) dimensions, since the

blockage of a uniform flow by such a body is small, regardless of the gap

under it; this is because the fluid can flow around the three dimensional

body.

When the blockage coefficient is large it has the effect of large added

mass and damping coefficients. The differential equation of slow motion

becomes second order and resonance occurs. The response for a transient may

exhibit considerable overshooting. This case was solved analytically. For a

long vessel with a narrow clearance underneath, we expect a similar blockage

effect to make the slow potential dynamically important. Finally, we

presented results for a sliding block where the blockage is infinite. No

resonance occurs in this case.

When the mooring is very weak and the blockage is not large, the slow

sway becomes 0(1). We found two types of damping: one is due to the radia-

tion of long waves and the other is due to the "forward speed" effect of the

slow sway on the short waves. Both these effects are small. The long wave

radiation was computed and the slow sway was found for intermediate gap
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width. When the gap is 0(E) or smaller the slow sway becomes O(e) even if

the mooring is weak, since the added mass and damping coefficient become very

large.

The heave motion too, was discussed. We have distinguished between a

bottle shaped body and a regular shaped body. The slow potential's

contribution to the vertical drift force is at leading order for a regular

shaped body, but the resulting motion is O(2). For a bottle shaped body

where the heave is large, the leading order slow vertical force is given by

the steady drift formula and the slow potential effect is negligible.

We now turn to other applications of the theory.
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4. TRAPPING AND RESONANCE OF LONG WAVES ON A SHELF

4.1 Introduction and Definition

It is well known that shallow water waves can be trapped on a shelf or on

a ridge (or outside a canyon). These waves must be propagating on the ridge

in a direction oblique to its axis. It is impossible by any linear mechanism

for such waves to enter the ridge from the deeper sea; they must be generated

by local forcing on the ridge. The wave length and period of the trapped

modes are much longer than those of swell with typical periods of 0(20 sec),

but can be close to the modulational frequency of swell groups, typically a

few mintues.

We shall show that swell groups incident from the sea can excite trapped

long waves on a shelf. If the excitation is resonant, these waves can be

greater than second order, and cause large slow oscillations. Hence the long

waves may present a hazard to off-shore platforms.

The subject of interaction of slowly varying waves with topography, and

trapping on a shelf was studied by Foda and Mei (1981) and by Mei and

Benmoussa (1984) who gave references to other work. The latter authors

studied a slowly varying topography in which reflection by the sloping bottom

is negligible. In the present work we study the case when reflection of the

short waves is significant.

For demonstration of the physics, we choose a relatively simple bathy-

metry in the form of a rectangular step. The width of the shelf is comparable
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to the wave group length, which is much greater than the short wave wave-

length. The water depths are comparable to the short wave length. To solve

for the flow potential, we perform a perturbation expansion in terms of the

short wave steepness, and utilize multiple time and (horizontal) space scales.

At the leading order, the short waves are found by the solutions of a

linear diffraction problem studied by Mei and Black (1969) using a variational

method, or, equivalently, by Galerkin method. For convenience, the problem is

solved as a superposition of a symmetric and an antisymmetric problem. In

contrast to the procedure employed for a floating body (Agnon and Mei 1985a),

the reflection by the shelf is very sensitive to the short wave wavelength.

This is because the shelf is long; even small variations within a narrow banded

spectrum give rise to large phase differences that affect reflection. An

alternative and equivalent approach is to break down the shelf into two steps,

matching their far fields (cf. Newman (1965)) while retaining the dependence of

the wave amplitude on the slow (stretched) time.

After finding the short wave field, we examine separately the near field

within a few short waves of the depth steps, and the far field, a few wave

groups away. We find the forms of the potentials for the slow waves in each

field, and match their asymptotic values to get the solution. It is found

that two types of long waves exist. The first one is locked to the shortwave

groups and propagates at the group velocity. The other is a shallow water

wave generated at the shelf edges and radiated away from them in directions

different from those of the short waves and the locked long waves. When the
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depths and angle of incidence are such that the second long wave is trapped on

the shelf, resonance can occur. The resonance obtained from the present

approximation is unbounded, since there is no radiation damping due to com-

plete trapping of the long waves. The onset of resonance, however, takes a

very long time.

We present results for the amplitude of the free long waves due to peri-

odic and transient inputs. The short waves are incident normally or obliquely.

The Cartesian coordinates (x, y, z) are the same as those of Section

2.1. The bathymetry is given by:

depth - h (jxj > L, -- < y < m)

depth - h' (IxI < L, - < y < )

where

h > h' (4.1.2)

that is, we are studying a ridge that runs parallel to the y axis. The water

is of intermediate depth:

ah - 0(1) ; ah' - 0(1) (4.1.3)

and the waves are incident from both left and right for the symmetric and

antisymmetric problem. The width of the ridge, 2L, is assumed to be comparable

to the length of the wave groups:

kL - O( -1 ) (4.1.4)

The case of a shelf ending with a vertical coast is equivalent to a special

case of the present problem where the incident waves from the left and the

right are symmetric.
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The regions within a few short waves from the ridge edges are called the

near fields, and the potential there is denoted by q

= o k(x ± L) = 0(1) (4.1.5)

The regions a few wave groups away from the ridge edges are called the far

fields, and the potential there is denoted by *:

* = k(x I - L) 0(0) ; k(x I + L1 ) f 0(0) (4.1.6)

where

(xl, yl, tl; LI) e c(x, y, t; L) (4.1.7)

are stretched quantities used to study the wave groups and the long waves.

In each region the potential is expanded into orders and harmonics, as in

Section 2.2. Let us first examine the short wave potentials, *HI *1 *

4.2 The Short-wave Potential

In the near fields, the equations for *jI are formally the same as the

equations for the diffraction of regular waves by a step. Two approaches can

be taken. One is to spectrally decompose the incident wave into its short

wave components and to superpose the respective solutions to get the total

diffraction wave field. It is well known that the diffraction by a long shelf

is very sensitive to small changes in the wavenumber. Along the shelf, small

phase differences due to dispersion have a large accumulating effect on the

interference of waves reflected from the two edges, as seen in the results of

Mei & Black (1969). An alternattve way is to use the multiple scale analysis,

and to follow the local wave amplitude of the wave group, which carries the
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required phase information. Since the shelf is large, a wide spacing approxi-

mation can be employed, taking into account only the propagating modes for the

interaction between the two edges (cf. Newman (1965)), as explained below.

Since the shelf is much longer than the wave length of the short waves,

we may assume that only the propagating modes from each edge reach the oppo-

site edge and that the evanescent modes may be neglected.

Consider an infinitely wide depth step at (x = -L). Let the potential of

a wave incident from the left of the step (from deep to shallow water) have a

unit amplitude:

I f0 exp(iax + iyy) (x < -L) (4 .2.1a)

with a k cos 8; y - k sin a

where 0 is the angle of incidence, then the propagating modes of the reflected

and transmitted waves are given by

R = R f exp(-iax + iy) (x < -L) (4.2.1b)

T T f6 exp(ix + iyy) (x > -L) (4 .2 .1c)

respectively, with k'2 - a'2 + y2 ; R' and T' are used to denote the

reflection and transmission coefficients for a wave incident from the shallow

side of the depth step. The values of R, R', T, and T' are determined using

the Galerkin method used in Section 3.2 for the floating rectangular

cylinder. {Fn} is replaced by {fn} which are the eigenfunctions for the
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onshelf potential. {f'}, k' are given by (2.3 .5a, b) with h replaced by h'.
n

Simple adjustments are made for oblique incidence as in Black (1970). Values

of R, R', T, and T' are plotted in Figure 4.3. Energy conservation was

verified by checking the numerical results against the identity:

(1 - R 12) Cg Cos e = ITI Cg2 Cos e9o o

where tan e' - Y/a'

Now consider the shelf of finite width 2L. We denote the short wave

potential in the far field off the shelf by:

= (A eax+Yy + B iQx+iYy) f0  (x < -L)

(4.2.2)

Oil (C eiax +iyY) f0  (x > L)

We study the case of waves incident from the left only. The case of waves

incident from both sides and in particular symmetric incidence, which

corresponds to a shelf of width L terminated by a vertical coast, can be

treated in the same way.

The propagating modes on the shelf are given by:

'11 ( ei  X+I~y + E -i a'x+ivv ' I

0 (D e iax+ Yy + E e IJ) f0 (Jx, < L) (4.2.3)

(see Figure 4.2). Matching the propagating modes in (4.2.2) and (4.2.3) and

making use of the reflection and transmission coefficients for each step, we

immediately get:

RA e ia(-L ) + T'E e
-ia (-L ) . B e- ia (-L)

(4.2.4)

TA ia(-L) + R'E e-ia'(-L) D eia'(-L)

at (x = -L), and
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T'D e ia'L C e

(4.2.5)
ia'L -ia'L

R'D e = E e

at (x - L)

In general, A, B, C, D, and E should be treated as functions of long time

scale. However, for a sinusoidal envelope it is easier to decompose the inci-

dent wave as follows:

A ei(ax+ ¥y-wt) A+ ei(a x+y y-c t)

(4.2.6)

+ A ei(a x+y y-W t)

where A+ = A- is a real constant,

+ _, -ira(t 1 - iix1 - vy I )

A - Re {(A+ + A ) e } (4.2.7)

CL y= (4.2.8)
kC ; kC

g g
and

+ -I+

a a + Ca ; a = a - CO; w = w+cw w w f  - en ; en/w 0(e) (4.2.9)

The rest of the amplitude functions are written:

_,- -i (tI + UxI - vyl)
B - Re {(B + B )e }

_,- -ira(t 1 - x I - vy1 )

C - Re {(C+ +C )e }
(4.2.10)

_,- -iia(t 1 - i'x1 - vy1)

D - Re {(D + D )e }

_,- -ia(t I + Uj'x I - vyl)

E - Re {(E + + E )e 
}

where
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P,2 + v2 .C,- 2  (4.2.11)g

or, equivalently in the form of (4.2.6).

Substituting A±, B±, C-, D±, and E- in place of A, B,C, D, and E in

(4.2.4) and (4.2.5) results in a matrix equation:

e la 0 0 -Teic ± L B- :+e-i L

+'ia±L ia L . TAea+L

o -e T ei 1 0 D o

0 0 Reia - L -e-ia L E± 0

which can be inverted to give:

S+R' exp(-aL) + R'TT' exp[i(4a+'-a)L

C+  A T'T exp[21(a -'-a+-)L]

+ I-R' 2 exp(41 L)+ (4.2.12)eD-I i~L) T exp [i(ca+ -a+)L]

+ , ±
E+  R'T exp[i(3a+ -a )LI

cf. Newman (1965).

Values of B±/A± are plotted in Figure 4.4. Since the small

differences between a+ and a- have an 0(1) effect on the phase for waves

travelling across the whole shelf, the amplitudes for the two components, )-,

differ. The solution given by (4.2.12) could be found without using the far

spacing approximation. An exact solution for B and C was given by Mei and Black

(1969) using a variational method. Their results for h'/h - 0.5 and L/h - 3

given in their Figure 2 are in excellent agreement with the present results

where we assume a long shelf - in the range of frequencies corresponding
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to (4.1.3)) as shown in Figure 4.4. For a transient problemA, B, C, D, and E

are more general functions of xj, yl, tj1 Results of using (4.25) (which relies

on the multiple scale approach) for transient envelopes will be presented

later. For a sinusoidal envelope we can substitute (4.2.8) and (4.2.10) into

(4.2.5). We end up with the same solutions for B+, B-, C+ , C-,...

An alternative to (4.2.12) is to decompose the short wave potential at,

say, w+, into a component that is symmetric with respect to (x -0) and an

antisymmetric component. This results in four sets of equations, for two

unknowns each. The results are, of course, the same.

This completes the determination of the propagating short waves. We may

turn to the long-wave potential.

4.3 The Long-wave Potential

The governing wave equation for the slow potential in the far field is

(2.4.18). We are still considering the monochromatic envelope input (4.2.6)

and wish to study the oscillatory motion that results from it. There are two

types of long waves. One is locked to the short wave groups, and is similar

to the waves given by (3.1.9). The only difference is in the direction in

which these waves propagate. Off the shelf, where thr short waves are unidi-

rectional, the locked long waves are given by the solution to (2.4.20).

-21n(t I  +U x I  - y 2 f (0) C 2- 2 2 k

(x .Re 2 0l - 2y1  _i 2O 2 Wk(x) Ree-I Ig (k 2 gh C + L--) (4.3.1)ltI gh - C ggg

where
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X - A,B,C (4.3.2)

A,B,C,D, and E refer to the four wave trains given by (4.2.7) and (4.2.10);

(-) is taken for A and C; (+) is taken for B.

On the shelf, the dispersion makes the wave envelopes propagate at a

different direction from the short waves. From (2.4.18) we get:

0 2k2 2,

X12  f62(0)C (k'2  - a + 2w (a' U1 + yv)) (4.3.3)
lot ght

g

where

X = D,E (4.3.4)

(-) is taken for D and (+) for E.

There will also be free waves, propagating away from the edges. The free

waves are solutions of the D'Alembert equation:

F 2FFlt - gh Vl2lO = 0 (4.3.5)

where h is replaced by h' on the shelf.

Because the potential is periodic in yl for the periodic envelope

(4.2.6), the free waves, too, must be periodic with the same wavenumber as

JA12, namely 2av.

The x, (cross-ridge) wavenumbers of the free waves 2io, 2na', must

satisfy:

-2 + V 2 (gh) 1  
(4.3.6)

0'2 2 )-(gh 1 (4.3.7)
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8, 8' will be real or imaginary, depending on the signs of 82, 82. We shall

study the interesting case where the free long waves are trapped as propagat-

ing modes on the ridge, and are evanescent off the ridge. In this case reso-

nance may occur. The free waves will have the form:

F G -Re G e 2i1n(tI - V yl) + 2 1(xI  < -L
*10 *10 1

F H +I (l1 < L1 )
*10 - *10 +10

with

H -Re H e - x yd (4.3.8)

Re -2iR(tI + 8'xI - v y1 )*10
I1 - Re I e -1~ I I

and

F 0 J Re J -2i1(tI - v yl) - 2nox I (xl > LI)

10 1

with

2 1 1 2 2 I 2 (439)
g-=* - v < 0<8 -" -h V(439

G, H, I, and J will be determined by matching to the near field potential.

The total far field is:

A B G (x < L
f10 = *10 + *10 + 10

*10 _ fD0 + E0 + fH + (xI < LI) (4.3.10)

C J

10 0 +10 (x > L)

from (4.3.1) and (4.3.8)
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In the near field, the geometry is the same as in the wide gap case

Section 3.3.1. Due to the arguements of Section 3.3.1 (Equation 3.3.16), the

slow potential *10 is independent of short scale (x, y, z). It does, however,

depend on y1 due to variation along the shelf:

0 0 (Yl,t 1 ) (4.3.11)

where + is the potential at the right edge and is the potential at the

left edge of the shelf.

Just as in Section 3.3.1, *10 does not depend on x, and the second order

slow drift velocity in the x direction is accounted for by *20x" Integrat-

ing the normal derivative of *20 around the 'boundaries' of the near field

S+ , S , S and SF (see Figure 4.1) at say (xI = -L= E - cL), we find as in

Section 3.3.1 a result similar to (3.3.34). It is:

f 20x dz - f *20x dz = -[h'U(-L+-) - h U(-L-o)] (4 .3 .12a)
S +(-L) S-(-L )

where S±(-L) and (x + - L ± ®) both stand for the matching boundaries to the

right and to the left of the edge at (xj - -L1 ). The derivation of (4.3.12)

is even simpler than that of (3.3.34) in the floating body case, since there

are no moving boundaries. At (xj - LI), we have, similarly,

f + 20x dz - f *20x dz = -[hU(L+.) -h'(U(L-ao)] (4.3.12b)

S (L) S (L)

To match with the near field near the depth discontinuity at (x - -L), we

may write the inner expansion of *10 (see 3.1.11) as follows:
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+1 B + G.-x 1{-i* B +G
101 +j f'1O +10] 11- 10 + V 0ot1  1o

X1 Lx I. 1 1 )

+ ~ ~ ( +1-U L ' B

10 I 1 10 10x 11--L 1 0 (1  10 10

*o [*Do + 4Eo + +Ho + 4 I] + *lP + li #E o H of *oI

(x + L1)

*io [~%+ ~~] - + +x1 [U1t 0 (x1 + L + (4.3.13)

Use has been made of the simple relations between t, and xderivatives of

these terms.

Matching (4.3.13) to the outer expansion of the slow potential from

(4.3.11) and (4.3.12) we get:

A .~B + fG - D +E H11 I1(x
*1o + fo 10o 10J 'i+o1 +i *io +*lo * ( 1  L1

4D + E +H I -+ =C + (x1 - L1
10 fl 10 +*10 *10 * 10 * 10 I

[h 10t + P' '10t + f G1Ox fD 0 + li fE0 H +8 olt
1 1 1 1 111110

- h' U(-L + co) - h U(-L -a)(x 1 . -L 1)

h' 10 * + Pi 10o 10 101 t8 4  h[pI fl0t - 10x

-h U(L + m)-h' U(L - a)(x 1 = L.1) (4.3.14)
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On the other hand, the Stokes drift termb nU and h'U are determined from

(3.3.27) as in (3.3.33). They are:

(1) -2int1  
2wa 2 2 1-2)

hU hRe U e g (0) AJ B x =

h'U h' Re U(2)e --2 1  
2 ' 2 O' i22 - 2 +

g 9 0() (1DI ,E, (x, - 1)

(4.3.15)
(3) .21nt 1  

2  f 2  (1-12  1-12
h'U h' Re U e 0 g DE )  = )

-2i ~2

(4) --1t1 2wa 2 ' 1
hU fh ReU) (xI = L)

where 1I 2 stands for the oscillatory part of 12 and has an exponential

factor as in (4.3.1).

We note that in contrast to the cases of Section 3.3, where the Stokes'

Drift terms eventually cancelled, they have a non zero net contribution in the

present problem. The reason is that in the floating body problem, conserva-

tion of energy was equivalent to conservation of mass in the drift terms,

since the depth and wavenumber were the same on both sides of the body. At

the present case the depth difference results in a net mass flux.

When (4.3.1), (4.3.3) and (4.3.8) are substituted into (4.3.14) we arrive

at four linear equations for G, H, 1, and J. These can be solved to yield a

full solution for the long waves, without having to explicitly solve for the

full second order potential.

We get:
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[b]la (4.3.16)

where the matrix b is given by:

F -2nL -2gBIL21no'L 1
e -e -e0

21Oo 1 -2ne -QL
(4.3.17)

2ah~e -B -21ah'$'e-
2i1nB'L1 21ibale 

21nOIL 1 0

0 -2i1nhlo'e 21iBL 1h's8e -21gIL -hoe-2$

and 8,, a2, 83, and a4 are the locked wave components in (4.3.14):

-Ae -2nu Be2jjL + De-ia + EeZS-L

a2 C 2n, 1-Eie-1 "' 21nuLL I

8 3 = -h[(-jjA e -2j~LI+ u.B e 2QL1)(-21n) + UM

+ ht [(-p'D e-2i1nu'L 1 + P'E e21i'1 L 1 )(-21n) + u (2)

a4 - -h [(-jj'E e -2nl.+ 11D e 21pLI) (-21n~) + u (3

+ h'[- ii'C e~ilL (-21n) + U (4
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The matrix (4.3.17) becomes singular when:

ImII(Bh + iolhl) 2e 1 0 (4.3.18)

(see Mei (1983, p. 141)) which means that there is infinite resonance of the

trapped free waves at the frequencies

2SI St tg -1O 1nr (4i.3.19)
n 61h' 2

We note that the second and third columns of (4.3.17) are complex conju-

gates of each other. This means that

I(S)= --H (2jj) (4.3.20)

Hence the free wave on the shelf is of the form

Re[ e 111t,- O'x, - vy,) H* e2in(t I + x' I - VY1)

= Re[JHJe 2i1a(t 1-Vy1 I siYC(':x -argH)

which is a standing wave in the xi directicn, propagating in the y1 direction.

H is found from (4.3.16) by Cramer's method:

e 2a, e2ijO'L 1  0

0 2 e -2 j6 L1-e -2I L1(4.3.21)

29he 2n,1 3 21ah'ale 21naL 1 0

0 a 4  21jjhIO'eif8L -2slh~e 1

4I 2 sin 2$'L 1(2Q 2)
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where the left hand side of (4.3.18) was written as a sine.

Figure 4.5 shows the variation of the normalized hIHu/A2 with Q/.. The

resonant frequencies correspond to the roots of (4.3.19). The spacing between

them is simply w/(4$'L1).

The location of the first resonance 00 is given by

- 1h (4.3.22)
2% =_$L tg 8'h'

The leading behaviour of no is due to the factor 1/(B'LI). In Figure 4.6, no

is plotted versus the angle of incidence of the waves.

In the special case of normal incidence (y v 0), Equation (4.3.8) is

replaced by:

F G -2iin(t I + x1//gh)
10 = G0 . ReG e (xI < -L1)

F H I <

1l0 * ho + *o (hxii L1)
with

= ReH e-21(t 1 - x /jiT) (4.3.23)

I -2in(t 1 - x1/)gh
fl 1 0 ReI e

and

F J ReJ -2in(t 1 - x1//gh) > -L
10 10 1

The free wave off the shelf is now propagating. Equations (4.3.16) and

(4.3.17) are still valid (with 8 imaginary). The normalized hlHI/A2 is

plotted in Figure 4.5. No infinite resonance occurs, and the variation with a

or L is minute.
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4.4 Transient Response

We have found that the trapped long waves due to obliquely incident short

waves can have an infinite resonance at certain modulation frequencies. This,

of course, is physically impossible. Note, however, that the present theory

relates to times on the scale of t1 , whereas the frequency response is calcu-

lated for a periodic incident wave envelope. Longer time scales, and hence,

higher order effects need to be considered. Foda & Mei (1981) have derived a

nonlinear Schrodinger Equation for the development of the resonated long waves

on a mildly sloping ridge. They found that a higher order radiation damping

limits the magnitude of resonance. We shall examine instead the transient

response of the ridge to a narrow banded incident wave of finite duration on

the time scale of ti. In particular, for oblique incidence we shall focus on

the case where the spectrum peak coincides with a resonant frequency.

We start by looking at the case of normal incidence, which does not lead

to wave trapping, but is the easiest to perform experiments for.

When -82 is positive, the governing equation for 10 can be easily solved

using finite differences in time. The response is passive, and the free waves

and the forced waves 'echo' on both edges of the shelf.

The method of solution is as follows: first we solve for the short

waves. Given A(L1 ,t1 ) we note that:

D(L1 ,t1 ) = D (-L , tI -LI/C'); E(-L , ti) E(LI, t1 -LI/C1)

making use of these relations to account for the propagation across the ridge,

we solve (4.2.4) and (4.2.5) at each time step, to find the short-wave

110



amplitudes: A, B, D and E at (x1 = L1) and C, D and E at (x1 - L1), see

Figures 4 .7a. The locked long-waves are computed from these amplitudes

through (4.3.1) and (4.3.3) and the Stokes' drift terms are found from

(4.3.15).

We can now eliminate the x, derivative from (4.3.14) via:

Gl G -J J100 .18J.o +
*10 0 10 111xI  t1 xI  t1

to get coupled equations for () (a G, H, I, J) that involve only tI

derivatives. Making use of

H H- J J -

H (L1  t1  - H (-Lis t1 -LI/ gh'); *10 (L,t) (-L t -LI/ gh')10(L1 t1 01 10-I tlt 10(-I 1

We integrate (4.3.14) numerically with respect to time from (t 1-0) on and

determine the free long waves at -L1 and at L1 .

In Figure 4.7b the wave characteristics of the long waves are sketched in

an (xl,t I) diagram.

The resulting transient response to a sinosoidal packet at the left edge

(xI - -L I) and at the right edge (xl - L I) is plotted in Figure 4.8.

Interference of the free waves and the locked waves can be seen after one

reflection. At later times the response is negligible.

F
For oblique incidence with wave trapping, *IF becomes evanescent off the

shelf and we shall use a Fourier Transform of the incident wave in conjunction

with the frequency response to determine the transient response. Let the

incident wave envelope be a Gaussian:
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A Re e -Q W P(4.4.1)

where p is the phase function:

P t P- 'Ix - Yv (4.4.2)

and

w <<f0 (4.4.3)

is the characteristic length of the packets.

The Fourier Transform of 1A12 with respect to 2SI is

F.T.(AJ2) = L odp 1A 12 e 21QP

I-W 2 P2 +1 21Qo1P-w 2  -21jp-2p2

w ..-ie4e 4 (4.4.4)

M I - [e-Q2 /W2 + -( -a 1 w 2+e-(Q+a)2/w2

Let us examine the transient response for H, the right going free wave on

the shelf at a point along the axis (x, - 0, y1  0).

11(0, 0, t1  2Re fd2a H(2g) e-21at I F.T.JA 12) (4.4.5)

since H (2na) is the complex amplitude of the frequency response to a component

of lAM2 in the form
1Re e 1 jjp (4.4.6)
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To accentuate the resonance effect, we choose 2n0 that lies on a pole of

H(2a). The leading term of (4.4.5) will be the contribution from that pole.

The Gaussian dependence will make all other contributions negligible because

of (4.4.3), and only the second term of (4.4.4) should be kept. The result is

H00,t)= 1 11H0 -2ttl - (f - (447)

- Re f d (2n)2(H 0 )e (4.4.7)
4wV', --

where H0 is the residue of H at the pole of H as a function of 2n at 2a -

2 0 . The values of H0 will be discussed later.

The integration path is slightly above the real axis in order to make H

tend to zero as tj goes to -a. This integral can be analyzed by the method of

steepest descent. In the complex plane 2Q, the phase function

( - )2

g(2a) - -2iflt- 2 (4.4.8)
w

has a saddle point s at:

2 - 2a0 -21 2 (4.4.9)

(see Figure 4.9). We transform the integration path to a path through s:

2
or-21w 2t I  H 0 -21nt I_ (a-%l) 2/W 2

H(0, 0 t Re f d2-2flt 1) -

(4.4.10)
H 0 -21not,1

+ U(t1) Re[-2wi - e
4wj/n

where U is the unit step function and the last term is due to the residue and

is added by Cauchy's theorem when the pole at 2n0 is traversed for positive
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tI. The contributions from the vertical segments connecting the present path

with Lhe real axis at both infinities vanish because of the Gaussian factor.

The integral in (4.4.10) can be evaluated by the following change of

variable:

a - 2a - 2a 0 + 2iw
2 t1  (4.4.11)

It becomes

H 22 2 22 t  ad4H0 -w tt 1  -0/ 4 w2
0-- e 1 a e 2 (4.4.12)

4w/ -c a - 21w t

This last integral has been evaluated (Carrier 1970) and is given by

22

sgn(t 1) in e I [I - erf wItill (4.4.13)

(4.4.10), (4.4.12) and (4.4.13) can be combined to give:

___0_ -2i~ot 1 (..4

H(0, 0, t1 )  e iRe 4w {sgn(t1 ) [I - erf wItll - 2 U(tI)1 e (4.4.14)

Equation (4.3.21) describes the spatial structure of the total free wave on

the shelf.

The strength of the transient response (4.4.14) depends on the energy in

the input packet via 1/w which represents its length, and on H0.

To find H0, we replace the denominator of (4.3.21) by 20'L 1 , hence H0 is

proportional to 1/($'L 1 ) and is an almost linear functions of no cf.

(4.3.22). In Figure 4.6 H0 is plotted versus the angle of incidence of the

short waves.
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Figure 4.10 shows the response of the trapped waves to the transient

input (4.4.1). As seen in (4.4.14) there is a transient part that builds up

before the arrival of the peak of the envelope and decays after its arrival,

and a steady 'wake' due to the contribution from the pole, that follows the

short-wave groups passage along the ridge and keeps oscillating at the

resonance frequency on the ridge, long after all other waves are gone. The

steady reverberation in the wake is, of course valid only for time scales that

are within the scope of the theory, namely on the t1 scale. Over much longer

time scales, higher order effects will diminish the wake. This behaviour is

typical of various wave guides.

We now turn to the diffraction of slowly varying waves in a two layer

fluid.
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5. EXCITATION OF INTERNAL WAVES IN THE LEE OF A BREAKWATER BY SLOWLY

VARYING SURFACE WAVES

5.1 Introduction and Definitions

It is well known that surface waves can interact nonlinearly to produce

internal waves. Past research in this field has been concentrated on the

resonant interaction of two surface wave components with an internal wave,

in an open sea. This type of work was started by Ball (1964) and is still being

continued (c.f. Dysthe and Das (1981) and references therein). In this chapter

we shall study the interaction away from resonance combined with diffraction by

a long breakwater. The short-wave groups and the "locked" internal waves

propagating with them will be shown to exist in the lit zone but not in the

shadow zone. Free internal waves will be required to maintain continuity of the

long wave field across the shadow boundary. We shall see that the free long

waves are slower than the locked long waves and hence the free long waves will

radiate away from the shadow boundary into the shadow zone (and the lit zone).

This mechanism can be important for resonant excitation in bays and behind

straits. The method of solution will again involve the use of multiple scales

and asymptotic matching of near fields and far fields.

The sea is modeled as a two layer fluid with the lower layer of density p

and depth h, and the upper layer of density p' and depth h'. The origin of

the coordinate system is chosen at the interface between the two layers with
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the z axis pointing upwards. The breakwater is lying on the positive y axis

and the waves are normally incident from (x + --) (see Figure 5.1).

Let us first determine the forced internal wave in an open sea. As in

Lamb (1932, p. 372) the short waves have a potential

ikx= ikx
11 = A0f0 e i A0 cosh k(z+h) e (-h < z < 0) (5.1.1)

in the lower layer, and

ikx ikx
oil - A0 fo e A0 (C cosh kz + B sinh kz)e (0 < z < h') (5.1.2)

in the upper layer.

Matching the vertical velocities at (z=0) we get:

-k sinh kh - -kB - iwb (5.1.3)

where A0b is the interface displacement amplitude for the short wave.

Matching the pressures at the interface gives:

p(iw cosh kh - gb) = p'(iwC - gb) (5.1.4)

At the free surface (z - h') the usual boundary condition leads to

w 2(C cosh kh' + B sinh kh') - gk(C sinh kh' + B cosh kh') (5.1.5)

b, B and C may be determined from (5.1.3) and (5.1.4):

b - ik/w sinh kh

B - sinh kh (5.1.6)

C - p/p' cosh kh - gk/w 2 (p-p')/p' sinh kh

Substituting these in (5.1.5) yields the dispersion relation

4 -2

W (p coth kh coth kh' + p') - w p(coth kh' + coth kh) gk
(5.1.7)

+ (P - p') g2k2 0
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For a fixed k this is a quadratic equation for w2. The surface wave mode

corresponds to the larger frequency of the two positive roots of (5.1.6).

The internal wave mode corresponds to the smaller w. When one mode is

selected, Equation (5.1.7) can be substituted in (5.1.2) to define f0. For

reference numerical solutions for w/k/ /g(h + h' versus k(h + h') are shown in

Figure 5.2 for both surface and internal modes, with (p-p')/p - 0.01;

h'/(h + h') = 0.05, .01 and 0.2.

5.2 The Locked Long-wave

We shall assume that o1l and oIl correspond to the surface wave mode.

To determine the long waves we follow the procedure of Section 2.4. For the

lower layer, the equivalent of (2.4.16) and (2.4.17) is:

20t + h lOx I  + (i Oil + *)x  = 0 (z = 0) (5.2.1)

where i is the displacement of the interface. For the upper layer, both the

free surface (C') and the interface must be considered:

20t 1 20t + h' 0lOxX1 + ,il (z=h') + *)20I - h'' +(I lx xl

(5.2.2)

I I oil (zO) + *) = 0
x xI

The equivalent of Bernoulli's Equation (2.4.14) are, at the free surface:

- I V ' 12 + (iwi '*
-g 0 ' + V *t + I 01t + *) (z-h') (5.2.3)

and at the interface:

+ V0,i12 + (i01 0 *
P1g C20 + t+ '(t~il ll *)
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111 + *O j (5.2.4)

P[g C20 + 010t 1 4- I + 1 1  z + (z=O)

Equations (5.2.1) - (5.2.4) can be solved for *0, 010, C20 and C2O"

Let us assume that CII has a monochromatic envelope:

I [Re a exp -i (t - 1-) eikx (5.2.5)
11 1 -Cg

where Cg is the group velocity of the short surface wave mode.

The slow potential is forced by the square of the short wave. It will have

a component that is time harmonic and proportional to exp(- 21it) and a steady

component. From here on we shall study only the first one. We proceed

to determine the amplitudes of the harmonic components of 010, 010, C20 and

20" For the locked long waves that propagate at the velocities ±Cg, the

homogeneous part of Equations (5.2.1) - (5.2.4) has the following coefficient

matrix:

-4 2 h 0 -2i 0
C 2

0 ~-4SI2h' 2 -i

b 0 C2 21j -21n (5.2.6)
g

2pin -2p'in p'g - pg 0

0 21 0 -g

The determinant of (5.2.6) is

4
{p C4 - p g(h + h') C 2 + (p - p') gh gh'} (5.2.7){pg pgh+ )g

2

This is a second order polynomial in Cg which has zeros at the roots of the

dispersion relation (5.1.5) (as a functon of w/k) in the long waves limit kh +
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0 and kh' + 0. This means that the short-wave groups will resonate the long

internal waves when they propagate at the same velocity, as is well known.

Equation (5.2.7) can be written as

4 2

g

where C' and C are the phase velocities of the long surface and internal

modes respectivley. This factor is similar to the factor (gh - C2) in

Section 2.

Equation (5.2.8) is equivalent to (5.1.6) in the limit of shallow water

waves. Ci and C' are given by:

C - g/2 {h+h' - [(h-h')2 (p'/p)h h'] 1 / 2  (5.2.9)

C12 - g/2 {h+h' + [(h-h')2 + 4 (p'/p)h h'] 1 /2  (5.2.10)

The long-waves solutions of (5.2.1) - (5.2.4) will include locked and free

long-waves. The locked long waves are found by solving the matrix equation:

L
10 a1

fL' a[b] a2 (5.2.11)
[b] -L "

20 a3
-L'

420 a4

where {a,, a2, a3, a4 ) are the forcing terms in (5.2.1) - (5.2.4):
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a,- ( 11 lx + *) (z = 0)

a2= (4 x(z='O) + *)x- ( 1 ¢ (zzh') + *)x
1 1

a3  p[ V~ll + ( + *)] - '[IiI 2 + (illullz + *)] (z 0)

a4  I + (iwl1 i1  *) (z - h')

The values of a,, a2, a3 and a4 are given by:

a -21n sinh 2kh

a -21n [(B2 + C2 ) sinh 2kh' + 4BC sinh 2 kh']2 WgCg

=k A0  (5.2.13)
a3  P - p' (C2 - B2)

a4  C B

where I012 is the harmonic part of I A 012. It is given (from (5.2.5)) by:

-2i(t I - )
i02 . ga 2 g

IA01  21wf(h'Y I Re e (5.2.14)

as in (3.3.13).
L L'

We denote the complex amplitudes of 010 and 0 by E and E', respectively:
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L L
0 ReEexp-21(t Re E' exp -2(t -X/C) (5.2.15)

1 g -o Re E' exp -2in(t, ig/C901

and those of ;20 and ;20 by Z and Z' respectively:

;20 Re Z exp -21(t 1 -x1/C ;20 Re Z' exp -21(t 1 -x /Cg) (5.2.16)

After eliminating the factor exp -21n(ti - x1/Cg), the coefficients E, E',

and Z' are found from the matrix equation (5.2.11) numerically.

Figure 5.3 shows the locked long waves amplitudes Z and Z' versus

k(h + h'). The parameters are h/(h +h') - 0.4, 0.5, 0.6 and (p - P')/P - 0.1.

The resonance at the roots of (5.2.8) is apparent.

The free long-wave will be determined in Section 5.4.

5.3 .The Short-wave Diffraction

For simplicity we shall only consider normal incidence of a surface wave

train from x - --. For a uniform wavetrain the diffraction can be written

in terms of the well known diffraction factor. We write 01, as the sum of a

right going wave and a left going (reflected) wave (see Figure 5.1):

O = Aofo0 (0+ eikX +0- e-ikx) ; - Aof,0 + e ikx + 0- e-ikx)

where in f0 and f , W
2 must be associated with the large (surface mode)

solution of (5.1.7).

The diffraction factors 0+ and 0- are:
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D(-y, /x) (x > 0)
(5.3.1)

1 (x < 0)

0 (x > O)

.)(y, /-x (x < 0)

whe re
D(y, IxI/ 2) + 0 (x > 0 , y +(5.3.2)

D(y, IxI1/ 2) + 1 (x > 0 , y +c)

and D can be found by a parabolic approximation (cf. Mei 1983, pp. 486-490):

Dy /) 1 1 1(533

D(y, vi - {L + C(a) + i[ + S(a)]} e- ' / 4 (33)
j2

with

a -E ky (5.3.4)
-fkx

and C and S are Fresnel cosine and sine integrals.

The derivatives of D with respect to x and y are:

1 3D -1
kD x 0(kx)

(5.3.5)
1 3D . O(kx)-1/2

kD 1y
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For a slowly varying wave:

= f0 {0
+ A0 (tl - x1) eikx + * A0 (tI + x) e-ikx

g g

x ) eikx +) A-ikx (5.3.6)
OIl = f0o + A0 (t + eO_ e-C

g g

If the incident wave is given by (5.2.5) then

A0 (t1 ) - a cos QtI g/(21wf6(h'))

as in (3.3.13).

The far field is defined by:

a > O(e - ) (5.3.7)

since there the leading order derivative is that of the phase factors

ikx -ikx
e and e (5.3.8)

and D can be approximated in the far field by its asymptotic value 0 or 1, see

(5.3.2).

When we substitute the form of oil, O'II for the diffraction problem into

(5.2.1) - (5.2.4), we find right away that the locked long-wave in the far

field is given by the solution of (5.2.11) multiplied by the square of the

diffraction factor from (5.3.1), which is summarized in the following table:

TABLE 5.1

Quadrant: I II III IV

Right Going: 0+ 0 1 1 1

Left Going: 0- 0 1 0 0
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The near field is defined as the region where the diffraction factor

variation is significant. It is the inside of the "parabola"

a = 0(C -1)  (5.3.9)

On the scale of xj , x is O(e
- 1) and y is 0(C-1/2 ), so that yj= 0. At the

leading order *10' *'10, the near field slow potentials, are functions of tj,

but not of yl. Hence we have,

*10 = 010 (Xl, tI) and O ff i 
0 (xl (5.3.10)

This near field slow potential should be matched to the far field poten-

tial:

=0(Yl = 0+, X1 9 tl) = *I0 (x 1  t1 ) = 10 (yl = 0-, X1, t1 ) (5.3.11)

The normal gradient of the slow potential should also be matched as in the

previous chapters:

10YI (Yl ffi 0+, xl, t) = *20 (y + + xl X, t)

(5.3.12)

O10y I (y = 0 i x1, Y = 20 (y + - , xI, t)

In the present problem there are no evanescent modes, and hence *20

represents a uniform current. To see that, we note that the forcing term for

*20z at (z - 0) as given in (2.2.6) and (3.3.26) can be evaluated as

follows (using a well known vector identity):

g 20z ff Vh " [iw$II Vh *11 +  ] T h "1i$1V I -i I h I

2 * * 2
= *O Vh 1  VII - i* V Vh *11

(5.3.13)

iwll [- k2 *11] - iwill [- k2 *111 - 0
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since *11 solves a single Helmholz equation and has no evanescent modes.

This means that *20 is divergence-free and we may write

i= 0, X1, t1) ' *20 (y ±, x1 , t1 ) f *10 =1(y1  0 , x1 , t1) (5.3.14)
• y

where *20y has the same value at both matching boundaries

Y O ' y + +o and yl - 0 , y + -a (5.3.15)

for any given xl, t1 . This is again a simple special case of (3.3.34) where

the net mass flux through the near field must be zero. At the outer limits of

the near field, the y component of Stokes' drift is zero since the waves are

propagating in the x direction. Hence, *20y accounts for the total drift

current in the y direction. 0, 10 and *20 satisfy equations identical

to (5.3.11) and (5.3.14). The near field is, in effect, transparent to the

long-wave and the matching is carried out between the far field potentials, on

both sides of the shadow and reflection boundaries. The near field merely

smooths the transition. The locked waves are already known and we now

determine the free waves.

5.4 The Free Longave

Let us write the slow far field potentials, 00 and *I0' as sums of

L L' F F'
locked long-waves: *10, *10; and free long-waves: 10, *10:

* L F 010 , L' F'
01o -00 o0 + 010 (5.4.1)

F F'
The governing equations for 0, are then obtained from the homogen-

eous counterparts of (5.2.1) through (5.2.4) with a/axl replaced by Vh,

i.e.,
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-F + 2 F
20t h = 0

-F' -F h 2 F'
20t - C20t +'vl~O = 01 1

(5.4.2)
-F' F'

-g;20= lOt1

F +F' F+F
p'(gc2 0 + I10t1 ) P(gC2 0 +lotI

Eliminating 20 and C20 yields

2_ 2 F2
(L2 _ V21 )-- C V2) 2fF 0 (5.4.3)
at2  C 1 at2 1 F

From (5.3.11) and (5.3.12) we get the boundary conditions:

F Y, =0 L4 y1  0 (5.4.4a)
=10 0 10 0

Y10 Y- = 10 l

F Y Q 0 L 1y 1 0 = 0 (5.4 .5a)
0y l Y1  0- l0y 1 0-

F' I L' 0 (5.4.5b)
Iy Y1  0- -lOYl Y= 0-
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L LL 0 and 0 are not functions of yl). From Equations (5.4.4), (5.4.5) and

L L' F F'
the form of 10, *10 we immediately see that *10, *10 are antisymmetric in x,

and in yl. It is therefore sufficient to solve for the free potentials in,

say, the first quadrant. The boundary conditions are:

along the breakwater:
F F'
10x 10x = 0 on (xl 0) (5.4 .6a)

I I(y, >0)

and along the line Yl = 0:

F'-21jj(t- ) (y, 0)

*10

Because of the form of the boundary condition (5.4.6b), we expect the

F F'
solutions of * 10 0 to have a wavenumber 2n/Cg in the x, direction.

Equation (5.4.3) describes waves of two types. One mode is the barotropic

surface mode with horizontal wavenumber 2l/Ci and the other, the baroclinic

internal mode with horizontal wave number 2a/Ci. For a wide range of

parameters, 21j/Cg lies between these two, i.e.,

2n 2n <2

Cg

This means that the internal mode of the free waves will be propagating and

have real wavenumbers in both the x, and y1 directions, while the free surface

mode will be evanescent in the y1 direction (since the x, wavenumber is
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greater than the total horizontal wave number).

Away from the shadow boundary for the free waves, which will be defined

shortly, we have

fx1  2 x I

F -21n(tl - - - V+ bcle
1 0 R e [ b t e g + b c e ( 5 )

L 
(5.4.7)li tblYll) -it 1  Il bcll)

F1 .Re[ * r -21n(tl C ,iv C+ *- e bcI Y11)
1I0 e +@ceg]

where the subscripts bt and bc stand for the surface (barotropic) and the

internal (baroclinic) modes, respectively, and

2 + C-2 -C 2
Vbt g

2 + C-2 C 2
Vbc g 1

The direction of the internal mode forms an angle

-I Ct

6 -cos - (5.4.8)
g

with the positive x, axis. There will be a parabolic transition zone between

the area into which the free internal waves are emitted and the area near the

yj axis where there are no free waves. This transition can be described in

terms of a diffraction factor, similar to D of (5.3.3)

D1 (Y ,/x-) . __ 1 1 , e-iit/4(54)

D- x - + C(o') + i [I-+ S(')]e (5.4.9)
/22

wit o' -Ky 2

with = LK ; K = 2p (5.4.10)
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and (x, y;) is a Cartesian coordinate-system with x'linclined at * with

respect to the xi axis:

xf cose sineI .1(5.4.11)

Y, -sine cose Y

The diffraction factor D1 multiplied by the periodic waves of Equation (5.4.7)

describes the 'diffracted' free long-wave field in the first quadrant (xj, yl

> 0). The significance of the existence of free waves is greatest in this

region. The free waves elsewhere are simply given by the free wave field

being antisymmetric with respect to both x, and yI.

In Figure 5.4 the transition zones for the emitted free waves are

sketched. We see that free internal waves are emitted into the "shadow zone"

behind the breakwater, where no short-waves or locked long-waves are present.

To determine the amplitude of the free internal waves, we first write

down the ratio of the amplitudes of the potentials for the two modes, the

barotropic (bt) and the baroclinic (bc). For the surface (bt) mode of the

2
free long-waves, we replace all V I operators in the equations (5.4.2) by

2-'
I/Ci a •at1 . We then eliminate C20 and C20 integrate with respect to tI and

determine the ratio bt/; t .

bt gh' - C'2

b-- - ' bt 1h > 0 (5.4.12)
b t gh

22

Replacing Cj2 by C , we get for the internal wave (bc) mode:
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bc gh'- C
fbc gh < 0 (5.4.13)

F F'
Note that the signs of f10 and fie for the internal wave mode are opposite.

From (5.4.6b) and (5.4.7) we have:

1 , + , 1
IEbc + bt = 2 E bt E' (5.4.14)

Equations (5.4.12) - (5.4.14) can be immediately solved to give *bc, *bt,

fbc and fbt In particular:

1 [E - aE'J / (1 - A) (5.4.15)fbc 28

The baroclinic (propagating) component of the interface displacement is found

directly from (5.2.1):

2in (54.6
Cbc m - 2 fbc (5.4.16)

ci

In Figure 5.3a, Z, the normalized amplitude of the locked long internal

-L
waves, C20, is plotted versus k(h + h'). The resonance at (kh + 0) is due to

C coinciding with C whereas the higher frequency resonance is due to C
g g

coinciding with Ci. In Figure 5.5, the normalized Cbc of Equation (5.4.16)

is plotted versus k(h + h'). When the depths of the two layers are equal the

high wave number resonance is absent in the baroclinic mode. This is because

the forcing is barotropic, E and E' are both large, but the barolinic mode (see

5.4.15) remains finite. When the layer depths are different the resonance of

the locked wave is reflected in the free waves. Near the resonance, however, 0
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Figure 5.5 a) The Free Internal Long-wave Amplitude Icbcl:
(p'p)/ -0.1, h'/(h+h') is a) 0.4, b) 0.5 and c) ().6.
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of Equation (5.4.8) is nearly zero. This means that the free waves penetration

angle into the shadow zone is very small, and the free waves are almost parallel

to the already existing locked long-waves. For waves with larger wave-numbers

than the resonant wave-number, the internal waves are evanescent. The values at

which Cbc becomes zero represent a change in phase of the free internal

waves. We expect the interface displacement to grow with decreasing reduced

gravity as seen when comparing Figure 5.5 (a) and (b).

This concludes our treatment of slowly varying waves in a stratified

fluid. The significance of our findings is in the propagation of energy into

the sheltered region in the lee of the breakwater. It is of interest to study

the possibility of resonance in a basin sheltered by a peninsula or a strait.

Additional aspects include the effect of continuous stratification and bottom

topography. The related problem of harbour resonance in a homogenous fluid

will be commented on in the following, conclusion chapter.
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6. COECLUSION

6.1 Sumary

In this work we have strived to gain insight into the interplay between

wave scattering and diffraction by floating bodies and topographical features

- and the wave nonlinearity. The waves were assumed to be slowly varying.

The water depth and the short wave-length are comparable. We carried out a

multiple scale perturbation expansion in both time and the horizontal space

coordinates. The governing equation in open water was formulated, purpose-

fully allowing for waves propagating in a few directions at the same loca-

tion. Locked long-waves were found that are forced by, and travel with the

short-wave groups.

We found that when the short-waves were modified by a floating body,

depth variations or a breakwater, so were the locked long-waves. The changes

in the mean mass flux and free surface elevation associated with these

modifications are balanced by the generation of free shallow water waves that

are radiated away from the region of short-wave modification. Specific

problems were then solved by studying the near field of the wave modification

regions and asymptotically matching to the far field.

The lion share of the thesis treats the drift motion of a floating budy.

Specifically, the leading order slow drift forces on a swaying horizontal

rectangular cylinder were studied in detail. Various mooring stiffnesses and

depth-draught ratios were examined. The method demonstrated can be readily

applied to more general body shapes and modes of motion. We have studied the

practically important case in which the slow drift amplitude is large and
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comparable to the short-wave length. The present work justifies the

results of the more intuitive engineering solutions that have been in use.

It also defines the limitations on its validity.

We have found that there is a first order slow potential that corresponds

to a second order pressure and second order slow surface elevation. This

pressure is at the leading order slow pressure and has not been considered

before. The force due to that pressure was determined. It was found to be

small for quite a general class of geometries. The slow first order poten-

tial is coupled to the slow second order potential. In particular, the ef-

fect of the second order potential on the leading order slow motion and waves

was derived without explicitly solving for any second order potential. We

have not computed the third order drift force due to the second order slow

potential, nor the damping due to the interaction of the slow sway with the

short waves. However, the simplicity of the formulation facilitates ex-

tension of the treatment to determine higher order corrections. In all the

cases studied both periodic and transient envelopes were investigated. The

sway response and the long-wave field were determined. For several config-

urations resonance was identified.

We have also studied the trapping of long waves on a shelf/ridge by obli-

quely incident slowly varying waves. Here, too, emphasis was placed on the

new aspects: those of partial reflection of the modulated short-waves - and

the resulting local second order slow potential which is coupled to the long

waves. Due to the depth difference between the two sides of the shelf edge

there is a net slow mass flux gradient associated with the short-waves that

contributes to the long-wave generation. Free shallow water waves are emit-
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ted away from the shelf edges. These free waves can be trapped on the shelf

and resonance may occur.

At the leading order the resonance appears infinite in the frequency res-

ponse formulation. We have chosen to study the excitation of an edge wave by

a transient envelope. After the input short-waves and locked long-waves have

passed, the trapped oscillation (which is a standing wave in the cross-shelf

direction and propagating along the shelf) remains behind as a wake, which

can be described as a 'ringing effect'. This effect can be of quiet a large

amplitude. At longer times, higher order effects that have not been included

will diminish the wake. Results for the response to normally incident waves

were also included. No trapping occurs and the response is passive.

Possible extensions of the theory include application to standing internal

waves, which have been observed on seamounts, and combining the effects of

shear currents (that can also trap waves) and rotation.

Finally we have considered the diffraction of slowly varying waves in a

two layer fluid. In addition to the surface waves, interfacial waves are

also present. When the short waves are diffracted by a long breakwater, the

locked long surface and internal waves are modified. We had asymptotically

matched the far field in the lee of the breakwater, through the shadow bound-

ary to the 'lit zone'. We found that free baroclinic long-waves are emitted

from the shadow boundary into both regions. Long waves are emitted from the

reflection boundary as well.

The free internal waves propagate obliquely into the shadow zone at an

angle that depends on the ratio of the internal wave velocity to the larger

surface-waves group-velocity. These internal waves can resonate in a basin.

Even small internal waves can be important to mixing processes and to bio-
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logical phenomenon. Space shuttle pictures of the straits of Gibraltar show

internal waves propagating obliquely into the lee of the straits.

All of the problems studied were designed to bring out the physics of

short waves - long waves interaction, the formal assumptions of the asym-

ptotic theory were: i) small waves steepness and ii) narrow wave spectrum.

For steeper waves and wider spectra, higher order corrections need to be con-

sidered. The simplicity of the present formulation facilitates such exten-

sion. The asymptotoic results should be compared with more accurate results

to assess their range of validity. An additional difficulty is associated

with a directional spread of the waves. When the range of wave directions is

continuous, the difference wave-numbers form a continuum and are not strictly

multiple scales. It is likely that this obstacle can be overcome by observ-

ing that the physical quantity of the gradient of the slow potential is se-

cond order. More work along these lines may allow easier treatment of three

dimensional problems. The various features described can be combined with

additional ingredients to study realistic, complex situations. Finally, let

us sketch our approach to the interesting problem of harbour reasonance.

150



6.2 Epilogue: Harbour Resonance

Harbours are known to undergo seiches at their natural frequencies which

are of the order of several minutes. Several mechanisms have been suggested

to be associated with the excitation of such oscillations. These include

surf-beats and edge waves. Bowers (1977) has studied the problem of waves

incident in a narrow channel terminated by a narrower basin. He did not con-

sider the local field near the basin entrance. The present theory shows that

since in uniform depth energy conservation translates to mass conservation in

the drift terms, the final result is not affected. We choose to study a more

realistic configuration, where the ocean is three dimensional. Consider, for

definiteness the configuration given in Figure 6.1. The short-wave groups

are incident on the breakwater and diffracted by it. As in Chapter 5 there

is no slow locked waves inside the harbour, while there is a slow standing

wave outside. Matching the two regions through the shadow boundary (that is

studied by conformal mapping) the free slow oscillations can be determined.

Since the eigenfrequencies of the harbour can fall in the range of the mod-

ulation frequency of the short waves, harbour resonance will be excited. In

contrast to the internal waves studied previously, the free waves outside the

harbour will be evanescent, since they are faster than the locked long-

waves. A full solution to that problem will be completed in the future.
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APPENDIX A

On The Scattering and Radiation of Regular Waves by a Seui-i.ersed

Rectangular Cylinder

In this appendix we supply some details on the determination of the

reflection coefficient, the hydrodynamic force for the scattering of regular

waves, the radiated waves, and the added mass and damping coefficients for

harmonic sway motion of a semi-immersed horizontal rectangular cylinder.

Multiplying (3.2.14) by {F0,...,FN} and integrating with respect to z

from -h to -D we obtain, from (3.2.16) and from the orthonormality of {FN}

the following N+1 linear algebraic equations.

A A
-2b P 0 0 g 0 B0 F0 + 1 B k cos k B A

Sn=l n n

* • • (A.1)

A A
-2b0 P = g0N B F 0 + B k cos k B A0 N O 1 n n n gn

n=l

where
-D

P = f dz f F (A.2)mn I m n
-h

[A -D +D I]
gmn -f f Fm(2) Fn(z') GA (z, z') dz dz' (A.3)

-h -h

From 3.2.16 we get

S S P P[A] [1 p + P Pn

9A A iE P + inI
nm = gmn _1 Im P m X k

(A.4)
coth kB 6£n tm

- [tanh k£B] K

From (3.2.15) multiplied by {Fi,...FN}
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N S
-2a0P01  -A nK nsinh K B l

n=1

* . (A .5)

N

O2 ON I -A K sinh K Bg
0 N n= 1 n N

We need to find RS and RA which are given by (3.2 .13a),

a 0 RS =.[ I -A n K n sinh K BPon]+I (A.6)

N
bRA =k B P0+ I - B nK ncosh KB P]+ I (A.7)

n=1

(A.1) can be rearranged to be a system of equations in terms of {RA,

Bo,.*.BNI and (A.5) can be written as a system of equations for {RS,

Al'..A),then using Cramer's method RS and RA are computed.

The hydrodynamic force can be evaluated directly. The symmetric

component yields no net horizontal force, so that for an incident wave of

unit amplitude:

I N
2 A - wp f oi da =iwpfl+R A)M 0 a 0 + I M n a n] (A.8)

where
0

M -f f dz n -0, 1,...
n -D n

and from (3.3.13), (3.2.7)

0 -9--- e iB(A .9)0 21wf 0(0)

Alternatively, F can be found from Haskind relationship as will be discussed

later. In Figure A.1 the values of
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Rj = -1 I(RS + RA)I (A.10)

are plotted. They agree with those of Mei and Black (1969 (Figure 6)) and

Black (1970 (Figure 9.9)) within graphic accuracy. The order of the

determinant was 10 for RA and 9 for RS. 40 terms are used in the series of

(A.4). The resulting errors are less than one percent.

For the radiation problem, the potential is antisymmetric, (3.3.9) is

replaced by

- k (x+B)
A -ik(x+B) n

*1 fobo e + I bn f ne (x < -B) (A.11)
n=l

the boundary condition on the sides of the swaying cylinder is (3.2.20).

Instead of (3.2.14), the following integral equation holds:

iMof c M f -D
0 0 nn fdz- GA (z,z') U (z') (A.12)

n1l n -h

Mutliplying (A.12) by {F0,...FN) and integrating with respect to z from -h

to -D, we get for a unit sway velocity:

N
- qo0 B0 +  gon Bn Kn cosh KnB

nq2

(A.13)

N
N q0N B0 +  2 gNn B nK cosh K B

where

i ~ 0  O + i M p/kq n fi kMO Pon +In mn /n
m1fi

B {Bo,...BN} is found by solving the set of equations (A.13).

Now
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N
-ikb0 f M0 B0P00 I gNn Bn K cosh K B (A.14)

n=1

which is used to determine b0 . From (3.3.13) we get the amplitude of the

radiated wave in terms of the sway velocity:

x R t fo0(0) bV -ikB (.5
11 r g 0 11

but
VI 1= -iWXl11 (A.16)

hence

R r a fo(0)b0 eikB (A.17)

Haskind relation is:

F 2pg e 21kB
2 • R (A.18)

f 2(0) r

In Figure A.1 the values of IRrI are plotted. They also agree with the

values of Black (1970, Figure 3.20) within graphic accuracy as do the values

of F computed from (A.8) or from (A.18).

The hydrodynamic force on the swaying cylinder can be written in terms of

the real valued added mass m and damping coefficient X defined by

2
-(-W m - iWA) XII = 21WP f oll dz (A.19)

From (A.11) and (A.16) we get:

2 M 2  N (A.20)

-(-W m - iWx) X 2 1w (I M0 + n + q0 Bo + Bn K coshKB

n=1 na1n

Since B is known, (-w2m - iwX) is determined from (A.20). The damping

coefficient can be related to Rr via energy balance as follows:

I cf. Newman (1977)
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2w~pk 1b0  2(A .21)

IVi I
where bois given by (A.14).

The value of X comiputed from bo (or Rr in Figure A.1) according to

(A.20) and (A.21) agree each with the other.
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APPENDIX B

Derivation of R, the Reflection Coefficient for the Short Waves,

for a Swaying Block with a Narrow Gap, or no Gap Underneath

As discussed !.n Section 3.3.2, the short-wave potential *11 is not affected

by the existence of a narrow (h/L = 0(e)) gap underneath the rectangular

horizontal cylinder. The solution for a sliding block was given in Agnon and

Mei (1985a) and is repeated here.

(2.3.4) is written in the form:

~-k x

(a+ L~ X +fikx+0b + f kn x(X >0)
01 0 0au /Q nl n n kx(B.1)

(a 0 eX + b0  ikxf + I n fn en xO
n=1

from (3.2.4) get

x - +

a 0  a 0 A0

n n n

When (B.1) is substituted into (3.2.6) and the scalar product of the resulting

equation is taken with fn for each n, we find

A -B 0  2- (-BF + B F)F (B.3a)
0 0 k 0M (- 0 F0  m mO0

0 m=0 1A

and

+

B = 0F + I B F (B.3b)
n kn Mn 00 m1j m m

where

F f fn dz (B.4)
n -n n

Define
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C B nF n(B. 5)
n=1

-2 F2
D 2P 1-a(B.6)

M n1kn

Then substituting (B.3b) into (B.5) gives:

C = (-B 0F 04-C) D (B.7)

From which

D-0 1 (B.8)

which substituted into (B.3a) yields:

A -B 0  02 (B.9)
00 k 0M D-I

which can be solved for R = OA

2 2

B =A +iF0 Fn M 1(B.10)
0 k0 n=1 kn 2

Similarly we get:

F F 2 2 O

A 0 k [-T---+- I nE]+ (B.11)n 0kn k0 n=1 kn 2

The values of IR12 are plotted in Figure B.1.
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Figure B.1 Square of Reflection Coefficient For Sliding Block.
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APPENDIX C

Derivation of the Ordinary Differential Equation for the Slow Sway in Terms

of the Radiation Stress

The derivation of the Ordinary Differential Equation for the slow sway

was outlined in Section 3.3.1. When (3.3.63) is differentiated with respect

to ti and substituted into (3.3.64), we get:

T +

K X10 ph 2c, [ -x + U ] (C.1)C t t lot t t
g Igh 11 11 1

+ pg 1A21 IR21 9

we now substitute for @10 , using (3.3.65), to get:
ti

T

0= 2ph c1 {{ C x + U (C.2)
10 IF g lot1~ I t

1 KX lot 1 R C C
+~ [ 2ph- I0 2h It IRI -I]+ pg JAI IR I --I

/gh 1 1

Rearranging, we get, using (3.1.6), (3.1.8), (3.1.9) and (3.3.33).

xlo ~+ K x + K x , =9 1 JA12 R12 .

ltII 2ph/gh ltI 2phc Il 2hc1 li C+~<< 2.g- o<,-I 12)[--- ow 2< (0)A 1 -C.3

+ R 12  t 01 - Ih 1A12 CYLI} (-IJ1)
Vgh 1 g

from (3.3.13) it is seen that
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Cf 0 
2  A =1 1 A12 C(C.4)

gh g (0) (0) ; 2h C

From (3.1.8, 3.1.9) we get

I0 . .2 Cg 2 [(k2  2) C + 2wk] (C.5)
lot I gh - Cg2

but

k2  2 k2 (1 - tanh 2 kh) k2/ch2kh (C.6)

and

2 C f sh kh ch kh + kh (C.7)g a h2
ch kh

C =--= th kh (C.8)

k

hence

k2  2 =k4 (2C -C) (C.9)

and

I 2okl
2w - C f 2(0)1A02

lOt gh g l

2 (2
S f [2 cg C c_ 2(gh - g) (C.10)

gh - C2 [ gh + ghC A
g

wk f2(0) [ C

gh - C2  gh C A01 g
g

Defining

-= 2 C (C.11)
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we may write (C.3) (using (3.3.13)) as:

x+ K x + K X
ltI 1 2ph,'gh 1o I phc 1  10

(3.3.66)
c 2 12 ]C 12
[(9 1R1 2 + I - IR12  .- Z- S + CK IR 12 g2 ]JA
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APPENDIX D

Evaluation of the Steady Drift Force on a Floating Rectangular Cylinder

In Regular Waves

In this appendix, we evaluate the steady drift force on a sliding block

in regular waves via direct integration of the mean pressure on the body, and

demonstrate that it is equal to that given by the general formula derived by

Maruo (1960) and by Newman (1967) via momentum flux consideration, and used in

(3.3.19). We shall then generalize the result to a floating cylinder.

In the right hand side of (3.3.8) we let P2 0 be given by (3.3.9) with

1P10t 1 set to be zero, for regular waves. We get for the drift force:

F = -p[ f p20 dz - f P20  dz + 6(iw*i11  1 + *)

S- 2S+2So S0
0 0

(D.1)

P1 =IV*12 + ,*
P20Q = l + (i 11 X1 1 + *) 

+ gz (D.2)
x

The contributions of the terms

1 2  and (iwipH X1 1 + *) (D.3)

to the integral are zero because of the kinematic boundary condition (3.2.4).

We shall, however, retain the first of these terms for completeness, and

because it facilitates the generalization to a floating cylinder. The

hydrostatic term can clearly be discarded of since

f z dz - f z dz - 0 (D.4)

S- S+

0 0

Integrating I*11z12 by parts, we find
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* * -o|

+ xx+ 'Pz h5- 0
S ± xx S +z

0 5-
(D.5)

* 2

fI dz + 2
S ± 

xx

where use has been made of (2.3.1), (2.3.2) and (2.3.3).

From 3.2.4 we get

f (iw* ix + *) dz - f (lw** 1 XI ,
+ *)dz 0 (D.6)

S- x +4 x
So So

Substituting (D.5) and (D.6) into (D.1) and using

iW (D.7)

we get

-F f , '1 + I+*1 12 dz- f (,, 'P1 + If 1I) dz (D.8)
p S xx x So xx x

If we write 'II in the form:

A S A i(elk(x+B) + R e-ik(x+B))f +  A ek(x+B))f
'P11 'P +1 -1 A0( 4RA e~ 0  n= An

(D.9)

k (x+B)
+ Bo(eik(x+B) + RS e ik(x+B))f 0 + B e f (x < -B)

n=1

where for (x > B) '11 is written in the same form, with 'Pl symmetric with

A
respect to (X-0) and 'P1 antisymmetric.

s A

'P1 is decomposed into 'P1 and 'PA so that the result can be generalized

to the floating rectangular cylinder case.

Making use of
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s (x = B) = (x -B)(

A B) A

11(x= B)= -1(x = -B) (D.11)

we get from (D.8) that:

-IF . 2 f j S A S S A *)]dz (D.12)

P S- xx xx x x

substituting (D.3) into (D.12) and making use of the orthoromality of {f0

fl'... we get:

-F =2 [-k2 AoB0 (I+RA)(1-RS) - k 2 A B
P n=l

(D.13)

k A0B0 (l-RA)(l-RS) - Ik n nB
n=1

or

4 k A0 B* (I + RA R) +* (D.14)

For a wave incident from (x = -=) with amplitude A, we get, from (3.3.13) and

(D.9)

A BgA (D.15)
0  0  4iwf0 (0)

The reflection and transmission coefficients are given by

R = I (RS + RA) , T - I (RS - RA) (D.16)

Substituting (D.16) into (D.14) we get:

- 8 k 2(1 + R 1  T 12 Re A B
P00

Substituting (D.15) into (D.17) we get
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F 2 (1 + 2 _T12) (D.18)

but
2C g/w [sh kh ch kh + khjl/ch 2 kh (D.19)
C g/ th kh

making use of (3.3.34) and (D.19), (D.18) can be written as:

F - pg 1A 12 IR12 C(D.20)

This result, (3.3.12), can be generalized to a floating rectangular cylinder.

If D is smaller than h, we need to subtract from the right hand side of (D.8)

the following expression

f () dz (D.21)
-h xx ix B

Integrating the first term by parts, we get, as in (D.5) that

-D -D
fdz I dz (D.22)

-h xx -h z
Since

- 0 (x - ±B; z - -h, -D) (D.23)
z

(cf. (2.3.3), (3.2.5)); Thus (D.10) may be written as:

v ,1112 dz (D.24)
h ix +B

which is the net mean horizontal momentum flux into the volume under the

floating cylinder. This quantity must be zero since there is no momentum

transfer from the swaying cylinder to the fluid below it. We conclude that

(3.3.12) is valid for swaying floating rectangular cylinders.
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APPENDIX 9

Derivation of the Added Mass and Damping Coefficient for Large Amplitude

Slow Sway

The presentation in this appendix is based on the work of Professor H.

S. Choi from Korea who was visiting Parsons Laboratory during 1985.

The method of a solution involves asymptotically matching a near field

solution and a far field solution. The near field is within a few short

wavelengths from the body. In the near field a rigid lid upper surface can

be assumed for a slow potential. We now apply the same reasoning which led

to Equation (3.3.59). Let the ambient flow velocity be cv, where we assume

that the sway motion has a unit amplitude. The sway velocity is thus

Re -2ie 21jt (E.1)

and its acceleration is

Re -41 e -2It (E.2)

Let the near field potential be

= Re *' e (E.3)

,' will have the following outer approximation in the body coordinates (i.e.,

x" = x - Re exp(-2iatl)):

' + c(v' + 21Q) (x" ± c) (kx" + ± o) (E.4)

where

-2int1

v = Re v' e (E.5)

In the fixed frame of reference, we have instead

*' + c[v'x ± (v' + 21)cj (kx + ± ) (E.6)

c, the blockage coefficient was given by Flagg and Newman (1971). In

normalized form, we have: 172



c + (In + 1) A+ (j (E.7)
-H H w ~4H h h'

In the far field, the radiated long waves are

4, Re *' e21At (E.8)

where

4' = ± a eik11xi1 (x1 > 0) (E.9)
(xI < 0)

a is an amplitude function and ghk2 = (2a) 2 . Use has been made of the fact

that the slow velocity field due to sway is even in xj, hence 4' is odd in

x . Note that * is a solution to the long-wave equation; we do not impose a

rigid lid condition in the far field.

The inner expansion of *' is:

' + ± a [I + ik 1 x1J + O(kx1 )2] (xI > 0) (E.10)
(x1 < 0)

Matching the asymptotic expansions (E.6) and (E.10) immediately yields:

ikI a 
= V' (E.11)

a e £(v' + 2in)c (E.12)

from which we find:

, -£2incik(v ik c-I (E.13)

The radiation coefficient, which is defined as the amplitude of the potential

02 per unit amplitude of sway displacement, is given by

-cik 1 c (E.14)
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To find the added mass V, and damping coefficient A, we compute the

horizontal dynamic force on the body:

-21ft

F = p[ f_ dz - f *t dz]- p Re -2ie If i,' dz - f ,' dz] =
S- 1 S+ 1 S- S+

S S S

-2iflt 1

= p Re[-2ine (ha - 2i 2BD)] (E.15)

(cf. Beck & Tuck (1972)).

The added mass and damping coefficient are defined by:

-F = (-412 1 - 2i)e (E.16)

From (E.15) and (E.16) we find:

-4g2 (V + M) - 2ijjA = 4n 2ph 2c (E.17)
eik C- 1

since M = 2pBD.

When the gap H is relatively large, the blockage coefficient tends 2BD/h

(this is because the increase of the current in the gap is approximately:

h/(h-D) - 1 + D/h as D + 0).

The normalized potential jump, 2a/(-2if), is approximated by -2c. This

implies that the force is mainly in phase with the acceleration:

Sp(-2BD + 2hc) + 2pBD (E.18)

which are the values for slow sway in the absence of free surface effects.
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